10、车辆与行人检测技术全解析

车辆与行人检测技术全解析

1. 车辆检测

1.1 垂直/水平边缘的应用

车辆的不同视角,特别是前后视角,包含许多水平和垂直结构,如后窗、保险杠等。利用垂直和水平边缘组合来推测车辆的存在,已被证明是一种有效的方法。

有研究利用边缘信息检测远处的汽车,提出了一种从粗到细的搜索方法来寻找矩形物体。粗搜索会遍历整个边缘图,寻找突出的边缘,如长且不间断的边缘。一旦找到这样的边缘,就会在该区域启动精细搜索。还有研究分别使用索贝尔算子提取垂直和水平边缘,然后应用两个基于边缘的约束滤波器(即排名滤波器和附加线边缘滤波器)对这些边缘进行处理,以从背景中分割出车辆。

HV(Horizontal/Vertical)步骤的输入是HG步骤中假设的位置集合。在HV步骤中,会进行测试以验证假设的正确性。HV方法主要可分为两类:基于模板的方法和基于外观的方法。

1.2 基于模板的方法

基于模板的方法使用预定义的车辆类模式,并在图像和模板之间进行相关性匹配。例如,有研究基于车辆前后视角呈“U”形(即一条水平边缘、两条垂直边缘以及连接水平和垂直边缘的两个角)的观察,提出了一种模板。在验证过程中,如果能在图像中找到“U”形,就认为图像中存在车辆。

1.3 基于外观的方法

使用外观模型的HV方法被视为一个两类模式分类问题:车辆与非车辆。构建一个强大的模式分类系统需要在待分类的类别之间寻找最佳决策边界。由于车辆类别的巨大类内差异,这并非易事。一种可行的方法是使用从训练图像中提取的特征集训练分类器,以学习决策边界。通常,还会对非车辆类别的变化进行建模,以提高性能。

每个训练图像由一组局部或全局

需求响应动态冰蓄冷系统需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值