图像特征提取与分析全解
1. 纹理特征概述
纹理与物体的平滑度、粗糙度、规律性等属性相关。光谱特征可作为纹理特征,例如环形功率可用于查找纹理。在小半径(如环形 1)处的高功率对应低频,代表粗糙纹理,即元素尺寸较大的纹理;随着环形编号增加,频率升高,对应更精细的纹理。当频率非常高时,如在外环,纹理看起来会非常精细,甚至可能显得平滑,这与人眼视觉系统的感知有关,当亮度变化过快时,我们就会觉得纹理是平滑的。
纹理还与图像相对于物体的大小以及原始图像的放大倍数有关。较高的放大倍数对应较大的元素尺寸和较低的频率能量,而缩小放大倍数时,元素尺寸减小,能量会分散到更高的频率。
若放大倍数未知或可变,但方向已知,光谱扇区测量可提供纹理信息。扇区功率包含所有频率,对应所有元素尺寸或放大倍数,但方向固定。实际中,可计算 10 个、20 个或更多的环形和扇区的光谱特征,并绘制其幅度以寻找对应特定纹理的特征形状。
2. 二阶直方图法测量纹理
另一种测量纹理的方法是基于联合概率分布模型使用灰度级的二阶直方图。二阶直方图方法也称为灰度共生矩阵或灰度依赖矩阵方法,这些特征基于两个参数:距离和角度。
距离是用于二阶统计的像素对之间的像素距离,角度是像素对之间的夹角。通常使用四个角度,分别对应垂直、水平和两个对角线方向。像素距离的选择取决于图像分辨率和感兴趣纹理的粗糙度,通常使用较小的值,如 1 - 6。为使特征具有旋转不变性,可对所有角度计算特征并求平均值。在 CVIPtools C 函数中,会返回四个角度下这些特征的平均值和范围;在 MATLAB CVIP 工具箱中,还可获取平均值、范围和方差。
通过这些方法衍生出了许多特征,
订阅专栏 解锁全文
372

被折叠的 条评论
为什么被折叠?



