25、图像特征提取与分析全解

图像特征提取与分析全解

1. 纹理特征概述

纹理与物体的平滑度、粗糙度、规律性等属性相关。光谱特征可作为纹理特征,例如环形功率可用于查找纹理。在小半径(如环形 1)处的高功率对应低频,代表粗糙纹理,即元素尺寸较大的纹理;随着环形编号增加,频率升高,对应更精细的纹理。当频率非常高时,如在外环,纹理看起来会非常精细,甚至可能显得平滑,这与人眼视觉系统的感知有关,当亮度变化过快时,我们就会觉得纹理是平滑的。

纹理还与图像相对于物体的大小以及原始图像的放大倍数有关。较高的放大倍数对应较大的元素尺寸和较低的频率能量,而缩小放大倍数时,元素尺寸减小,能量会分散到更高的频率。

若放大倍数未知或可变,但方向已知,光谱扇区测量可提供纹理信息。扇区功率包含所有频率,对应所有元素尺寸或放大倍数,但方向固定。实际中,可计算 10 个、20 个或更多的环形和扇区的光谱特征,并绘制其幅度以寻找对应特定纹理的特征形状。

2. 二阶直方图法测量纹理

另一种测量纹理的方法是基于联合概率分布模型使用灰度级的二阶直方图。二阶直方图方法也称为灰度共生矩阵或灰度依赖矩阵方法,这些特征基于两个参数:距离和角度。

距离是用于二阶统计的像素对之间的像素距离,角度是像素对之间的夹角。通常使用四个角度,分别对应垂直、水平和两个对角线方向。像素距离的选择取决于图像分辨率和感兴趣纹理的粗糙度,通常使用较小的值,如 1 - 6。为使特征具有旋转不变性,可对所有角度计算特征并求平均值。在 CVIPtools C 函数中,会返回四个角度下这些特征的平均值和范围;在 MATLAB CVIP 工具箱中,还可获取平均值、范围和方差。

通过这些方法衍生出了许多特征,

内容概要:本文详细介绍了一个基于CNN-GRUAdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRUAdaBoost协同工作的原理优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值