论文学习--Resource allocation for multi-user downlink MISO OFDMA-URLLC systems

Title:Resource allocation for multi-user downlink MISO OFDMA-URLLC systems
Author:Walid R. Ghanem, Vahid Jamali, Yan Sun, and Robert Schober
Target:
系统架构:single cell, multiuser, downlink, OFDMA(创新),MISO
优化目标:最大化加权系统总吞吐量
约束:发送bit数,packet error probability, delay
资源:
作用:作为次优低复杂度的性能上界
仿真结论:证明多天线可以减低时延,提高可靠性,当时延需求不同时,优于两种比较算法,接近于最优算法结果
数学问题:非凸问题,通过monotonic优化解决

Related work

the performance limits of short packet communication (SPC) :
optimal power allocation in a multi-user time division multiple access
(TDMA) URLLC system was considered in

  • Y. Hu, M. Ozmen, M. C. Gursoy, and A. Schmeink, “Optimal power
    allocation for QoS-constrained downlink multi-user networks in the
    finite blocklength regime,” IEEE Trans. Wireless Commun, vol. 17, no. 9, pp. 5827–5840, Sept 2018.

  • J. Chen, L. Zhang, Y. Liang, X. Kang, and R. Zhang, “Resource
    allocation for wireless-powered IoT networks with short packet communication,” IEEE Trans. Wireless Commun, vol. 18, no. 2, pp. 1447–1461, Feb 2019.

  • S. Xu, T. H. Chang, S. C. Lin, C. Shen, and G. Zhu, “Energy-efficient packet scheduling with finite blocklength codes: convexity analysis and efficient algorithms,” IEEE Trans. Wireless Commun, vol. 15, no. 8, pp. 5527–5540, Aug 2016.

the energy efficiency was maximized by optimizing the antenna configuration, bandwidth allocation, and power control= under latency and reliability constraints.

  • C. Sun, C. She, C. Yang, T. Q. S. Quek, Y. Li, and B. Vucetic, “Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications,” IEEE Trans. Wireless Commun, vol. 18, no. 1, pp. 402–415, Jan 2019.

a cross-layer framework based on the effective bandwidth was proposed for optimal resource allocation under QoS constraints.

  • C. She, C. Yang, and T. Q. S. Quek, “Cross-layer optimization for ultrareliable and low-latency radio access networks,” IEEE Trans. Commun, vol. 17, no. 1, pp. 127–141, Jan 2018.

the joint uplink and downlink transmission design for URLLC in MISO systems.

  • C. Shen, T. Chang, H. Xu, and Y. Zhao, “Joint uplink and downlink transmission design for URLLC using finite blocklength codes,” in Proc. ISWCS 2018, Lisbon, Portugal, August 28-31, 2018, 2018, pp. 1–5.

a hybrid automatic repeat request (HARQ) scheme for URLLC systems

  • A. Avranas, M. Kountouris, and P. Ciblat, “Energy-latency tradeoff in ultra-reliable low-latency communication with retransmissions,” IEEE J. Sel. Areas Commun, vol. 36, no. 11, pp. 2475–2485, Nov 2018.
  • D. Qiao, M. C. Gursoy, and S. Velipasalar, “Throughput-delay tradeoffs with finite blocklength coding over multiple coherence blocks,” IEEE Trans. Commun, pp. 1–1, 2019.

System model

  • single-cell downlink OFDMA system, single BS with NT antennas,using 5G NR standard (such as typical sub-carrier bandwidth of 15kHz, Ts is 66us and to meet the delay requirement of URLLC N has to be smaller than 7),operates in a time-division duplex (TDD) mode.
    N T N_T NT : BS antennas
    K: Number of URLLC users with single antenna.
    M: the numbers of the orthogonal sub-carriers indexed by m ∈ 1 , . . . M m \in{ {1,...M}} m1,...M
    T f T_f Tf:duration of resource frame with the unit of seconds
    N s N_s Ns:numbers of subframes
    N: time slots of each subframe indexed by n

System model
classification of users
one OFDMA symbol spans one time solt ,and in total M*N resource elements assigned to K users in each subframe.
在这里插入图片描述

  • Assumption: delay requirements of all users are known at the BS;only users whose delay requirements can potentially be met in the current resource block are admitted into the system.
  • Channel model
    Received signal of k-th user on sub-carrier m in time slot n, linear transmit precoding at BS------->SINR of user k在这里插入图片描述在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Resource Allocation problem formulation

Achievable rate for SPC

Maximum number of bits conveyed in packet comprising L symbols: its an approximation result . Eq.,(6) is the base of the resource allocation algorithm.
ϵ \epsilon ϵ: decoding packet error probability
i: the i-th symbol
L:=M*N, the total resource elements
在这里插入图片描述
channel dispersion
在这里插入图片描述

Qos and system performance metric

  • Qos requirments of URLLC user

minimum number of received bits, Bk
target packet error probability, ϵ k \epsilon_k ϵk
maximum number of time slots available for transmission of the users packet, Dk (delay requirements of user k can be met by assigning all symbols of user k to the first Dk time slots)

  • total number of bits transmitted over the resources allocated to user k(based on Eq.(6))
    在这里插入图片描述
    在这里插入图片描述
    where, w k \bold w_k wk: collection of all beamforming vectors
  • weighted sum throughput
    To control the fairness among all users
    在这里插入图片描述
    μ k \mu_k μk: weight factor, larger of the factor, the higher priority of the user and the higher throughput
    It can be specified in the MAC layer and is assumed to be given in this paper.

Optimization problem formulation

在这里插入图片描述
C1: guarantees the minimum number of Bk bits to k-th user;
C2:total power budget constraint of BS
C3: delay requirements.
Its a non-convex problem due to the non-convexity of SINR and Eq(8)

Optimal solution

Using monotonic optimization to lead the optimization problem to an iterative resource allocation algorithm and with a semi-definite relaxation problem in each iteration.
If need, focus on the mathematical process.

Performance evaluation

Simulation parameters

在这里插入图片描述
The path loss: 35.3 + 37.6 l o g 10 ( d k ) 35.3+37.6log_{10}(d_k) 35.3+37.6log10(dk), dk is the distance from BS to user k
all user weights are set to μ k = 1 \mu_k=1 μk=1

  • Performance metric
    sum throughput
    在这里插入图片描述
    averaging R over all channel realizations ----average sum throughput

Performance bound

Shannon’s capacity formula is adopted in problem(14).

Baseline

  • Scheme1: solution obtained for shannons capacity formula is used to compute the sum throuthput.
  • Scheme2: employ maximum ration transmission beamforming,
    在这里插入图片描述

Simulation results

  • Convergence
    different numbers of sub-carriers M and different numbers of user K
    sum throughput as a function of the numbers of iterations
    Result: converge to the global optimum solution;
    在这里插入图片描述
    在这里插入图片描述

  • average sum throughput versus the maximum transmit power at BS
    在这里插入图片描述
    for different antennas and different delay requirements.
    S0: scenario 0, none of the users has delay restrictions,Dk=N=4
    S1: two users have strict delay D1=D2=2, the remaining users Dk=4
    在这里插入图片描述
    1.more antennas at the BS considerably increases the average system sum throughput;2. the stricter delay requirements for S1 reduce the average system sum throughput compared to S0 because the BS is forced to allocate more power to the two delay sensitive users even if their channel conditions are poor to ensure their delay requirements are met

  • average system sum throughput versus the number of antennas
    在这里插入图片描述

  • average sum throughput vs. different delay requirement
    在这里插入图片描述
    在这里插入图片描述

-average system sum throughput versus the number of users for different delay scenarios
在这里插入图片描述

  • the average system sum throughput versus the packet error probability
    在这里插入图片描述

impact of imperfect CSI

  • model
    在这里插入图片描述
  • using normalized mean squared error NMSE to quantify the quality of the CSI
    在这里插入图片描述
  • modify optimal problem by adding a safety margin to the feasible region
    form Bk to (1+bk)Bk, bk is a positive parameter refering to as a back-off parameter.
    The consraint C1 in (14) is 在这里插入图片描述
    The backoff bk can be adjusted according to the accuracy of channel estimation. More accurate of the estimation, the smaller bk, which means that bk is 0 for perfect CSI.
    在这里插入图片描述
    depending on the adopted value of bk, a minimum channel estimation quality is required for the proposed resource allocation scheme to achieve a high performance.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值