Salience-Guided Cascaded Suppression Network for Person Re-identification

本文提出了一种新颖的显著性引导的级联抑制网络(SCSN)用于人再识别任务。该网络通过级联抑制策略挖掘不同显著特征,避免仅关注最显著特征的问题。SCSN包括显著特征提取单元和特征聚合策略,如残差双注意模块和非局部多阶段特征融合,以增强低层和高层特征的表示。实验表明,这种方法在多个数据集上优于现有方法。
摘要由CSDN通过智能技术生成

Salience-Guided Cascaded Suppression Network for Person Re-identification

论文:Salience-Guided Cascaded Suppression Network for Person Re-identification,CVPR,2020.

链接:paper

摘要

动机:

使用注意力机制来建模全局和局部特征作为最终的行人表示已经成为人再识别(Re-ID)算法的趋势。这些方法的一个潜在限制是它们集中于最显著的特征,但是对一个人的重新识别可能依赖于在不同情况下被最显著的特征所掩盖的不同线索,例如身体、衣服甚至鞋子。为了解决这一问题,我们提出了一种新颖的显著性引导的级联抑制网络(SCSN),它使模型能够挖掘不同的显著特征,并通过级联方式将这些特征集成到最终表示中。

文中做了如下贡献:

  • 观察到网络在学习其他重要信息时不可避免的获得了异化特征。为了解决这一限制,我们引入了一种级联抑制策略,该策略使网络能够逐级挖掘被其他显著特征掩盖的各种潜在有用特征,并且每个阶段为最后的有区别的行人表示集成不同的特征嵌入。
  • 提出了一种显著特征提取单元(SFE)单元,该单元可以抑制前一级级联学习的显著特征,然后自适应地提取其他潜在的显著特征,以获取行人的不同线索,
  • 开发了一个高效的特征聚合策略,该策略充分增加了网络对所有潜在特征的容量。

实验结果表明,在四个大规模数据集上,我们提出的方法由于现有的方法。

引言

为了进一步提高模型的特征表示能力,提出了一种显著性引导的级联特征抑制机制,使得网络能够自适应地提取所有潜在的显著行人特征。更具体地说,我们提出了一种特征聚合策略,该策略包括一个剩余双注意模块(RDAM)和一个非局部多阶段特征融合(NMFF)块,以更好地聚合主干的低级和高级特征,以及一个显著特征提取(SFE)单元,以有效而高效地提取不同的潜在特征。在特征聚合策略的帮助下,我们的网络可以更好地利用低层特征,如衣服的颜色和纹理,这大大提高了主干的特征表示能力。因此,具有SFE单元的级联抑制头可以通过级联抑制更新来提取显著特征。在实验中,我们首先在全局阶段上提取特征,通过SFE单元提取最显著的区域级信息。在特征抑制机制中,为了促进信息流,在某一阶段学习的显著特征首先与全局特征相结合,以增强该阶段的特征可区分性,然后将其抑制,以获得下一阶段的无显著性特征的输入特征。类似的对于其余阶段,在先前的显著性特征被抑制后,网络将利用SFE单元挖掘一些其它重要的显著性特征,图1 中说明了显著性引导的级联抑制网络。

综上所述,文中的贡献如下:

  • 引入了一种新的级联特征抑制机制,该机制可以逐级挖掘所有潜在的显著特征,并将这些区别性显著特征与全局特征相结合,形成最终的行人多样化特征表示。
  • 我们设计了一个显著特征提取(SFE)单元,通过抑制最显著的特征来自适应地提取潜在的显著特征。
  • 我们整合了高效的功能聚合策略,包括RDAM和NMFF区块,这增加了网络对所有潜在显著功能的容量。

在 Market1501、DukeMTMC-ReID 、CUHK03 和MSMT17 上的大量实验表明,我们的方法在四个流行的基准上显著优于现有的最先进的方法。

img

模型结构

我们的目标是优化模型的结构,自适应地提取行人的潜在显著特征。为此,我们提出了基于显著性的级联抑制网络(SCSN)。它引入了两个新的组成部分:特征聚合模块(剩余双注意模块和非局部融合模块)和显著特征提取单元。为了方便起见,

在阶段t中,我们将输入特征映射表示为Xt,将增强特征映射表示为Yt,将t+ 1阶段输入的抑制特征映射表示为 Xt+1。我们的框架如图2所示。

img

1.残差双注意力模块(Residual Dual Attention Module)

Residual Dual Attention Module (RDAM)包含channe attantion module,和有残差链接的spatial attantion module,用来提取通道注意力和空间注意力。

  • channel attantion没有变化,有:

img

​ W1和W2是FC的参数,σ是sigmoid函数,而δ是ReLU。

  • spatial attantion基本没有变化,而当avg pooling map和max pooling map提取的map经过conv之后得到spatial feature时,文章将此时上一个stage的这个spatial feature跟这个stage的spatial feature做一个特殊的残差连接,再输入给sigmoid,得到spatial attantion map。跨stage的spatial feature map残差链接有:

img

其中β是初始化为1的可训练变量,σ是sigmoid激活函数。

2.多阶段non-local特征融合 ( Non-local Multistage Feature Fusion)

NMFF考虑了两种Non-local的信息源,如下图5,

img

具体来说,我们考虑用于非局部融合块的两种类型的源信息:

高级特征映射 F h ∈ R C h × H h × W h F_h∈R^{C_h×H_h×W_h} Fh<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值