CVPR2020行人重识别论文

1、Transferable, Controllable, and Inconspicuous Adversarial Attacks on Person Re-identification With Deep Mis-Ranking

paper

2、Inter-Task Association Critic for Cross-Resolution Person Re-Identification

paper

3、Learning Multi-Granular Hypergraphs for Video-Based Person Re-Identification

paper

4、Online Joint Multi-Metric Adaptation From Frequent Sharing-Subset Mining for Person Re-Identification

paper

5、Style Normalization and Restitution for Generalizable Person Re-Identification

paper

6、Relation-Aware Global Attention for Person Re-Identification

paper

7、Spatial-Temporal Graph Convolutional Network for Video-Based Person Re-Identification

paper

8、Salience-Guided Cascaded Suppression Network for Person Re-Identification

paper

9、Unsupervised Person Re-Identification via Softened Similarity Learning

paper

10、High-Order Information Matters: Learning Relation and Topology for Occluded Person Re-Identification

paper

11、Unity Style Transfer for Person Re-Identification

paper

12、AD-Cluster: Augmented Discriminative Clustering for Domain Adaptive Person Re-Identification

paper

13、Hi-CMD: Hierarchical Cross-Modality Disentanglement for Visible-Infrared Person Re-Identification

paper

14、Multi-Granularity Reference-Aided Attentive Feature Aggregation for Video-Based Person Re-Identification

paper

15、Smoothing Adversarial Domain Attack and P-Memory Reconsolidation for Cross-Domain Person Re-Identification

paper

16、Learning Longterm Representations for Person Re-Identification Using Radio Signals

paper

17、Unsupervised Person Re-Identification via Multi-Label Classification

paper

18、Camera On-Boarding for Person Re-Identification Using Hypothesis Transfer Learning

paper

19、Cross-Modality Person Re-Identification With Shared-Specific Feature Transfer

paper

20、Hierarchical Clustering With Hard-Batch Triplet Loss for Person Re-Identification

paper

21、Real-World Person Re-Identification via Degradation Invariance Learning

paper

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值