15、几何细分与多尺度变换中的收敛性研究

几何细分与多尺度变换中的收敛性研究

1. 细分过程的收敛性定义

当将离散数据 $p$ 视为函数的采样时,细化后的数据 $Sp$、$S^2p$ 等可看作是比原始采样密度分别高 $N$ 倍、$N^2$ 倍等的采样结果。基于此,我们对收敛细化规则给出如下定义:

在第 $k$ 次细化迭代时,离散数据 $S^kp: \mathbb{Z}^s \to M$ 确定了一个函数 $f_k: N^{-k}\mathbb{Z}^s \to M$,其值为给定的数据点。对于任意 $N$ - 进点 $\xi$,若 $N^k\xi$ 为整数,则有 $(S^kp) {N^k\xi} = f_k(\xi)$。对于所有这样的 $\xi$,序列 $(f_k(\xi)) {k\geq0}$ 最终是有定义的,令 $f(\xi) = \lim_{k\to\infty}f_k(\xi)$。若对于所有 $\xi$,极限函数 $f$ 存在且连续,我们就称细分规则 $S$ 对于输入数据 $p$ 是收敛的,并且它可以唯一地扩展为一个连续函数 $S^{\infty}p: \mathbb{R}^s \to M$。

若数据 $p_i$、$Sp_i$ 等位于向量空间中,还可以通过另一种方式定义极限。我们用函数 $g_0$、$g_1$ 等对它们进行线性插值,使得 $g_k(N^{-k}i) = S^kp_i$。此时,函数 $g_k$ 的极限与上述定义的极限是一致的(虽然上述定义是逐点的,但实际上在紧集上通常是一致收敛的)。

2. 细分规则收敛性的判定引理

设 $M$ 是一个完备度量空间,细分规则 $S$ 以膨胀因子 $N$ 作用于数据 $p: \mathbb{Z}^s \to

源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值