几何细分与多尺度变换中的收敛性研究
1. 细分过程的收敛性定义
当将离散数据 $p$ 视为函数的采样时,细化后的数据 $Sp$、$S^2p$ 等可看作是比原始采样密度分别高 $N$ 倍、$N^2$ 倍等的采样结果。基于此,我们对收敛细化规则给出如下定义:
在第 $k$ 次细化迭代时,离散数据 $S^kp: \mathbb{Z}^s \to M$ 确定了一个函数 $f_k: N^{-k}\mathbb{Z}^s \to M$,其值为给定的数据点。对于任意 $N$ - 进点 $\xi$,若 $N^k\xi$ 为整数,则有 $(S^kp) {N^k\xi} = f_k(\xi)$。对于所有这样的 $\xi$,序列 $(f_k(\xi)) {k\geq0}$ 最终是有定义的,令 $f(\xi) = \lim_{k\to\infty}f_k(\xi)$。若对于所有 $\xi$,极限函数 $f$ 存在且连续,我们就称细分规则 $S$ 对于输入数据 $p$ 是收敛的,并且它可以唯一地扩展为一个连续函数 $S^{\infty}p: \mathbb{R}^s \to M$。
若数据 $p_i$、$Sp_i$ 等位于向量空间中,还可以通过另一种方式定义极限。我们用函数 $g_0$、$g_1$ 等对它们进行线性插值,使得 $g_k(N^{-k}i) = S^kp_i$。此时,函数 $g_k$ 的极限与上述定义的极限是一致的(虽然上述定义是逐点的,但实际上在紧集上通常是一致收敛的)。
2. 细分规则收敛性的判定引理
设 $M$ 是一个完备度量空间,细分规则 $S$ 以膨胀因子 $N$ 作用于数据 $p: \mathbb{Z}^s \to
超级会员免费看
订阅专栏 解锁全文
46

被折叠的 条评论
为什么被折叠?



