基于Prony算法的系统参数辨识matlab仿真

本文详细介绍了Prony算法的基本原理,用于处理线性时不变系统(LTI)的信号处理和系统辨识,通过MATLAB2022a版本展示了如何使用该算法估计信号的复杂成分。核心部分包括构建过采样矩阵、线性方程组求解和参数辨识的过程。
摘要由CSDN通过智能技术生成

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       Prony算法是一种用于信号处理和系统辨识的经典方法,特别适用于线性时不变系统(LTI)的频率响应分析以及模拟复指数信号序列。其基本思想是通过观测到的时间序列数据,估计出系统中包含的多个复指数函数及其对应的系数,从而揭示系统的动态特性。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

............................................................................
for ij = 1:length(SNR)
    for k = 1:50
        [ij,k]
        %%
        %参数初始化
        %参数初始化
        Fs    = 100;   %采样频率设置为400
        Delta = 1/Fs;
        dt    = 1/Fs; 
        
        
        %加入直流分量%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
         
        %%
        %原始的模拟信号
        %原始的模拟信号
        ts    = 1:0.005:length(n)-1;
        %测试序列
        X1    = 3*exp(-0.95.*ts).*cos(3*pi.*ts)+...
                4*exp(-0.2.*ts).*cos(45.6*pi.*ts+0.5)+...
                5*exp(-0.3.*ts).*cos(60*pi.*ts)+...
                6*exp(-0.4.*ts).*cos(80*pi.*ts+0.5)+200;
        
        %测试序列     
        X     = awgn(X1,SNR(ij),'measured'); 
        
        
        %普罗尼计算 
        Xs = func_Prony(X,dt);
        
        err(ij,k)= mean(abs(X(1:end-1)-Xs(2:end)));
    end
end

figure;
plot(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('error');
27_006m

4.本算法原理

        假设一个LTI系统输出为一个离散时间序列y[n],它是由M个具有不同幅值、角频率和初相位的复指数函数叠加而成:

y[n] = ∑_{m=1}^{M} A_m * exp(j(ω_m*n + φ_m))

其中:

  • A_m 是第m个复指数函数的幅值。
  • ω_m 是第m个复指数函数的角频率。
  • φ_m 是第m个复指数函数的初相位。
  • j 是虚数单位。
  • n 是时间索引。

Prony算法的目标就是根据观测到的离散序列y[n],求解出Am, ωm, φm这三个参数。

Prony算法的具体步骤:

  1. 构建过采样矩阵Y: 对于长度为N的数据序列y[n],构造 Hankel 矩阵或Toeplitz矩阵 Y,矩阵元素由 y[n] 的滞后和超前项组成。

  2. 线性方程组构建与求解: 通过对上一步得到的矩阵进行适当的操作(例如特征分解或最小二乘拟合),可以建立关于幅值A_m、频率ω_m和初相位φ_m的线性方程组,并解这个方程组以获得这些参数的估计值。

  3. 参数辨识: 解决上述线性方程组后,即可得到系统中各个振荡分量的幅值、频率和初相位,进而实现对系统动态特性的精确辨识。

5.完整程序

VVV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件算法开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值