德州仪器FAE面试总结

近期正在找工作,有TI的FAE工作岗位,抱着有机会都先试试的态度,参与了技术面:

技术面的问题:

1.相应自己简历上的项目介绍以及和本次FAE相关的内容介绍

2.相应的电源类型:LDO,DC-DC,PWM等等其他

3.运算放大器等相关一些知识,对放大器影响比较大的一些参数

4.完整的电源模块的一些模块介绍:电源,稳压,调理信号,滤波,load

5.ADC的介绍以及相应的一些相应具体的具体类型:积分性,渐进性等

6.信号处理等相关内容介绍及里面的关键影响因素

关于FAE:

1.对于FAE的了解

2.对于具体的FAE遇到的问题,如多家厂家都比较紧急需要解决相应的故障,如何办?

从个人角度

从团队角度

公司资源角度

3.FAE的发展前景

4.对半导体的意向度,这个比较隐晦,貌似是在讲相应FAE的一些前景,实际是在关注候选人的意向度,可能有的时候意向度也很重要。

 

基本总结如下:

1.技术准备

2.具体岗位了解和疑问

3.一定要表现出对相应岗位极大的兴趣

4.总体面试有的时候比较玄学,你不清楚公司具体看中什么,不过面的公司多了,总会有合适的

 

 

 

祝大家好运,也希望都找到好工作

 

### FAE面试常见技术方向问题及解答 #### 关于RESTful API设计的理解 在现代软件开发中,RESTful API的设计是一个常见的主题。对于资源的操作通常包括获取、创建、修改和删除,这些操作分别对应HTTP协议中的GET、POST、PUT和DELETE方法[^1]。 ```python import requests def get_resource(url): response = requests.get(url) return response.json() def create_resource(url, data): headers = {'Content-Type': 'application/json'} response = requests.post(url, json=data, headers=headers) return response.status_code def update_resource(url, data): headers = {'Content-Type': 'application/json'} response = requests.put(url, json=data, headers=headers) return response.status_code def delete_resource(url): response = requests.delete(url) return response.status_code ``` #### 对位操作的理解及其应用场景 位操作是一种底层编程技巧,在嵌入式系统或硬件驱动程序开发中尤为重要。如果应聘者提到位操作的应用场景,则可能表明其具有汇编语言背景或是希望转型到新领域的高级语言开发者[^2]。 ```c #include <stdio.h> void set_bit(int *num, int position) { *num |= (1 << position); } int check_bit(int num, int position) { return ((num >> position) & 1); } ``` #### Faster R-CNN的工作原理概述 Faster R-CNN作为一种经典的两阶段目标检测算法,主要由四个部分组成:主干卷积网络用于特征提取;RPN(Region Proposal Network)负责生成候选区域并通过softmax分类anchors为正负样本;边框回归进一步优化候选区域的位置精度;最后通过ROI Pooling层处理候选区域并送入全连接层完成最终的类别预测与边界框调整[^3]。 ```python from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.models import Model input_layer = Input(shape=(None, None, 3)) conv_base = Conv2D(64, kernel_size=7, activation='relu')(input_layer) rpn_output = ... # Define the Region Proposal Network here. roi_pooling = ... # Implement ROI Pooling layer. classification_head = Dense(num_classes, activation='softmax')(roi_pooling) bounding_box_regression = Dense(4)(roi_pooling) model = Model(inputs=input_layer, outputs=[classification_head, bounding_box_regression]) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值