训练数据的归一化处理

对于一般的数据(如两列的数据特征,第三列是label)

 数据的归一化处理

# 归一化处理
for i in range(2):
    x_data[:,i]=(x_data[:,i]-x_data[:,i].min())/(x_data[:,i].max()-x_data[:,i].min())

图片数据的归一化处理:

图片数据:

 归一化代码:

train_x=tf.cast(train_x/255.0,tf.float32)
valid_x=tf.cast(valid_x/255.0,tf.float32)
test_x =tf.cast(test_x/255.0,tf.float32)

从而实现对数据的归一化处理,防止因为量纲差异过大造成计算问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值