1、进制的介绍
定义:进位制,人们规定的一种进位方式;表示某一位置上的数,运算时是逢X进一位。
十进制是逢十进一;二进制是逢二进一,八进制是逢八进一;
常见进制:二进制,八进制,十进制,十六进制;
学习进制的原因:计算机数据在底层运算时,都是以二进制形式。也有数据是八进制,十进制,十六进制进行存储或运算,了解不同的进制,便于我们对数据的运算过程理解的更加深刻;
2、十进制、二进制、八进制和十六进制
(1)十进制:运算规则:逢十进一,借一当十;
(2)二进制
二进制数据是用0和1两个数码来表示,例如:0101000;进位规则是“逢二进一“,借位规则是”借一当二“
打开电脑中的计算器,点击1,再点击2;打开窗口如中间图片;计算0011+1结果为右边的图片;
(3)八进制和十六进制
八进制采用0-7,八个数字,逢八进一;
十六进制采用0-9和A-F(或a-f)组成,A到F表示10-15;逢十六进一;
3、不同进制书写格式:
十进制:在代码中,数值默认都是十进制,不需要加任何修饰;
二进制:数值前面以0b开头,b大小写都可以;
八进制,数值前面以0开头;
十六进制:数值前面以0x开头,x大小写都可以;
4、进制之间转换
(1)二进制到十进制
公式:系数*基数的权次幂相加;系数:每一【位】上的数;基数:几进制,就是几;权:从数值的右侧,以0开始,逐个+1增加;
例如:0b100=1*2^2+0*2^1+0*2^0=4;
(2)十六进制到十进制
公式:系数*基数的权次幂相加;
0x100=1*16^2+0*16^1+0*16^0=256;
(3)八进制到十进制
公式:系数*基数的权次幂相加;
0100=1*8^2+0*8^1+0*8^0=64;
(4)十进制到二进制,十进制到十六进制;
除基取余:使用源数据,不断的除以基数(几进制,基数就是几)得到余数,直到商为0,再将余数倒着拼起来即可。
5、快速进制转换法
8421码:
8421码又称BCD码,是BCD代码中最常见的一种;BCD(binary-coded Decimal)二进制码十进制数;在这种编码方式中,每一位二进制值的1都是代表一个固定数值,把每一位的1代表的十进制数加起来得到的结果就是它所代表的十进制数;
(1)二进制快转十进制
将二进制数值直接套入其中,0所对应的值不取,1所对应的值取出并相加;
(2)二进制快速转八进制
八进制:将三个二进制位看作一组,再进行转换;
原因:八进制逢八进一,三个二进制位最多可以表示111,也就是数值7,如果出现第四位就超范围了;
例如:将60的二进制0b111100转换位八进制;
(3)二进制快速转十六进制
十六进制:将四个二进制位看为一组,再进行转换;
原因:十六进制逢十六进一,四个二进制位最多可以表示1111,也就是数值15,如果出现第五位就超范围了;
例如:将60的二进制0b111100转换位十六进制;
6、原码、反码和补码
注意:计算机中的数据,都是以二进制补码的形式在运算,而补码则是通过反码和原码推算出来的;
(1)原码:可以直观看出数据大小;
就是二进制定点表示法,即最高位位符号位,【0】表示正,【1】表示负,其余位数表示数值大小;通过一个字节表示7和-7,一个字节等于8个比特位,也就是8个二进制位;
7的表示:0(符号位) 0000111;即00000111;代码:byte b1=7;
-7的表示: 1(符号位)0000111;即10000111;代码:byte b2=-7;
(2)反码:转数据;
正数的反码与其原码相同,负数的反码是对其原码逐位取反,但符号位除外;
(3)补码:运算数据;
整数的补码与其原码相同,负数的补码是在其反码的末位加1;
(4)总结:
正数的原码/反码/补码都是相同的;
负数的反码,是根据原码取反(0变1,1变0)得到的(符号位不变);
负数的补码,是根据反码的末尾+1,得到的;
例如:-7的补码:
原码:1(符号位) 0000111——符号位不变,0变1,1变0;
反码:1(符号位)1111000——反码末尾+1,求补码;
补码:1(符号位) 1111001;
(5)根据补码反向推原码
7、位运算
(1)介绍
位运算符是二进制的运算,先将十进制数转成二进制后再进行运算。
在二进制位运算中,1表示true,0表示false;
(2)位移运算符
<<有符号左移运算,二进制位向左移动,左边符号位丢弃,右边补齐0;
运算规律:向左移动几位,就是乘以2的几次幂;
>>有符号右移运算,二进制位向右移动,使用符号位进行补位;
运算规律:向右移动几位,就是除以2的几次幂;
>>>无符号右移运算符,无论符号位是0还是1,都补0;
(3)位运算符介绍
符号 | 计算方式 |
& | 遇到0(false)则0(false),两边同时位1(true),结果才是1(true) |
| | 遇到1(true)则1(true),两边同时位0(false),结果才是0(false) |
^ | 相同为false,不同为true |
~ | 取反,二进制位全部取反,0变1,1变0,包括符号位; |
<< | 有符号左移运算,左边符号位丢弃,右边补齐0 |
>> | 有符号右移运算,根据符号位,补齐左边; |
>>> | 无符号右移,无论最符号位是0还是1,都补0; |
(4)异或运算的特定啊
一个数被另外一个数,异或两次,该数本身不变;
练习1:a和b两个数互换;
第一种方法:
第二种方法:
练习2:
把数组反转;arr={1,2,3,4,5}——arr={5,4,3,2,1}