1. 确定多片模型中各个片的顺序
借助Paraview.打开Pipeline brower下方的information选项卡,可以看到Data Hierarchy中的multi-block dataset. 选定其中一个block, 可以查看其几何区域和边界的范围。由这个信息可以确定片的顺序。
打开gsview.pvd -> Properties Apply -> filters Alphabetical Extract block, create ExtractBlock1 并选中它 -> Properties apply -> properties, block indices
通过该信息可以准确确定block的编号;
2. 确定每个片的边界
每个片的边界编号按逆时针编号为 1 3 2 4 ,分别为西南东北。
利用./gsMakeMultipatch 输出的makeMultiPatchOutput.xml, 文件的最后一部分代表其边界拓扑信息。
利用这些信息可以确定边界的编号
例如
<MultiPatch parDim="2" id="0">
<patches type="id_range">0 1</patches>
<interfaces>1 2 0 1 0 1 1 1
</interfaces>
<boundary>1 4
1 3
0 4
0 3
0 2
1 1
</boundary>
</MultiPatch>
表示:
[15:17:49] Angelos Mantzaflaris: patch 1 side 2 matches with patch 0 side 1
[15:18:25] Angelos Mantzaflaris: patch 1 side 4(north) is a boundary
[15:20:07] Angelos Mantzaflaris: opposite to the inteface: patch 1 --> side 1(west), 0 -->side 2(east)
These definitions are used by, e.g., boxSide, boxCorner, etc.
The sides are numbered as follows:
2D CASE | 3D CASE
-------------------------------------|----------------------------------------
Edge 1, {(u,v) : u = 0} : \c west | Face 1, {(u,v,w) : u = 0}: \c west
Edge 2, {(u,v) : u = 1} : \c east | Face 2, {(u,v,w) : u = 1}: \c east
Edge 3, {(u,v) : v = 0} : \c south | Face 3, {(u,v,w) : v = 0}: \c south
Edge 4, {(u,v) : v = 1} : \c north | Face 4, {(u,v,w) : v = 1}: \c north
| Face 5, {(u,v,w) : w = 0}: \c front
| Face 6, {(u,v,w) : w = 1}: \c back
\c none is a special compatibility value used to denote that this is not a boundary.
The corners are numbered as follows:
2D CASE | 3D CASE
---------------------------------------------------|----------------------------------------
Corner 1, {(u,v) : u = 0, v = 0} : \c southwest | Corner 1, {(u,v,w) : u = 0, v = 0, w = 0}: \c southwestfront
Corner 2, {(u,v) : u = 1, v = 0} : \c southeast | Corner 2, {(u,v,w) : u = 1, v = 0, w = 0}: \c southeastfront
Corner 3, {(u,v) : u = 0, v = 1} : \c northwest | Corner 3, {(u,v,w) : u = 0, v = 1, w = 0}: \c northwestfront
Corner 4, {(u,v) : u = 1, v = 1} : \c northeast | Corner 4, {(u,v,w) : u = 1, v = 1, w = 0}: \c northeastfront
| Corner 5, {(u,v,w) : u = 0, v = 0, w = 1}: \c southwestback
| Corner 6, {(u,v,w) : u = 1, v = 0, w = 1}: \c southeastback
| Corner 7, {(u,v,w) : u = 0, v = 1, w = 1}: \c northwestback
| Corner 8, {(u,v,w) : u = 1, v = 1, w = 1}: \c northeastback