支持向量机器—SMO算法

引入SMO的背景

前面的文章提到,SVM的学习问题可以转成下面的凸二次规划的对偶问题:
min ⁡ α      1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j K ( x i , x j ) − ∑ i = 1 N α i s . t .    ∑ i = 1 N α i y i = 0 0 ≤ α i ≤ C \min\limits_{\alpha} \;\; \frac{1}{2}\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}\alpha_i\alpha_jy_iy_jK(x_i,x_j) - \sum\limits_{i=1}^{N}\alpha_i\\ s.t. \; \sum\limits_{i=1}^{N}\alpha_iy_i = 0 \\ 0 \leq \alpha_i \leq C αmin21i=1Nj=1NαiαjyiyjK(xi,xj)i=1Nαis.t.i=1Nαiyi=00αiC
上面的式子是关于 α i , i = 1 , 2 , . . . N \alpha_i, i=1,2,...N αi,i=1,2,...N的函数,由于一个 α i \alpha_i αi对应一个样本,所以变量的个数等于样本的个数。在样本众多的情况下,直接对所有的变量1求全局最优解,计算量太大。

为解决这个问,可以使用序列最小最优化(SMO)算法,基本思路为:如果所有变量的解都满足KKT条件,那么就得到了最优化的解(因为KKT条件是该问题最优化问题的充要条件)。如果不满足KKT条件,那么选择两个 α i , α j \alpha_i, \alpha_j αi,αj作为变量,其他的作为常量,然后对这两个变量进行优化,那么优化的结果应该更接近KKT条件。整个SMO算法包括两个部分:

  1. 求两个变量的解析解
  2. 选择变量的启发式方法

两个变量二次规划求解方法

先假设我们已经按照某种方法选择了两个变量 α 1 , α 2 \alpha_1,\alpha_2 α1,α2 ,其他变量 α i ( i = 3 , 4 … , N ) \alpha_i(i=3,4\ldots,N) αi(i=3,4,N) 可以视为常量,在优化函数中可以舍去。于是优化函数可以写成:
min ⁡ α 1 , α 2 W ( α 1 , α 2 ) = 1 2 K 11 α 1 2 + 1 2 K 22 α 2 2 + y 1 y 2 K 12 α 1 α 2 − ( α 1 + α 2 ) + y 1 α 1 ∑ i = 3 N y i α i K i l + y 2 α 2 ∑ i = 3 N y i α i K i 2 s . t .     α 1 y 1 + α 2 y 2 = − ∑ i = 3 N y i α i = ς 0 ⩽ α i ⩽ C , i = 1 , 2 \begin{aligned} \min_{\alpha_1,\alpha_2} W(\alpha_1,\alpha_2)=&\frac{1}{2}K_{11}\alpha_1^2+\frac{1}{2}K_{22}\alpha_2^2+y_1y_2K_{12}\alpha_1\alpha_2\\ &-(\alpha_1+\alpha_2)+y_1\alpha_1\sum_{i=3}^Ny_i\alpha_iK_{il}+y_2\alpha_2\sum_{i=3}^Ny_i\alpha_iK_{i2}\\ s.t. \ \ \ &\alpha_1y_1+\alpha_2y_2=-\sum_{i=3}^Ny_i\alpha_i=\varsigma\\ &0\leqslant\alpha_i\leqslant C, i=1,2 \end{aligned} α1,α2minW(α1,α2)=s.t.   21K11α12+21K22α22+y1y2K12α1α2(α1+α2)+y1α1i=3NyiαiKil+y2α2i=3NyiαiKi2α1y1+α2y2=i=3Nyiαi=ς0αiC,i=1,2
式子中 K i j = K ( x i , x j ) , ς K_{ij}=K(x_i,x_j),\varsigma Kij=K(xi,xj),ς 是常数。约束条件为一个不等式约束和一个等式约束。

根据约束条件: α 1 y 1 + α 2 y 2 = ς = k , 0 ⩽ α i ⩽ C \alpha_1y_1+\alpha_2y_2=\varsigma=k,0\leqslant\alpha_i\leqslant C α1y1+α2y2=ς=k0αiC,其中 y i ∈ { − 1 , 1 } y_i \in \{-1, 1\} yi{1,1},可以知道 ( α 1 , α 2 ) (\alpha_1,\alpha_2) (α1,α2) 在平行于盒子 [ 0 , C ] × [ 0 , C ] [0,C]\times [0,C] [0,C]×[0,C] 的对角线的线段上。根据不同的 y 1 , y 2 y_1, y_2 y1,y2的取值,函数图像如下图所示:

在这里插入图片描述

假设原始问题的初始可行解为 α 1 o l d , α 2 o l d \alpha_1^{old},\alpha_2^{old} α1old,α2old,本次迭代的最优解为 α 1 n e w , α 2 n e w \alpha_1^{new},\alpha_2^{new} α1new,α2new,假设沿着约束方向 α 2 \alpha_2 α2未经剪辑(未考虑不等式约束)的解是 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc

由于约束边界的存在,实际上有:
L ≤ α 2 n e w ≤ H L \leq \alpha_2^{new} \leq H Lα2newH
其中,L为线段下端点,H为上端点,具体的:

y 1 ≠ y 2 y_1 \neq y_2 y1=y2 时,如上图(a),则:
L = m a x ( 0 , α 2 o l d − α 1 o l d )        H = m i n ( C , C + α 2 o l d − α 1 o l d ) L = max(0, \alpha_2^{old}-\alpha_1^{old}) \;\;\;H = min(C, C+\alpha_2^{old}-\alpha_1^{old}) L=max(0,α2oldα1old)H=min(C,C+α2oldα1old)
y 1 = y 2 y_1 = y_2 y1=y2 时,如上图(b),则:
L = m a x ( 0 , α 2 o l d + α 1 o l d − C )        H = m i n ( C , α 2 o l d + α 1 o l d ) L = max(0, \alpha_2^{old}+\alpha_1^{old}-C) \;\;\; H = min(C, \alpha_2^{old}+\alpha_1^{old}) L=max(0,α2old+α1oldC)H=min(C,α2old+α1old)
所以,最终的 α 2 n e w \alpha_2^{new} α2new 应该要满足以下情况:
α 2 n e w = { H α 2 n e w , u n c > H α 2 n e w , u n c L ≤ α 2 n e w , u n c ≤ H L α 2 n e w , u n c < L \alpha_2^{new}= \begin{cases} H& { \alpha_2^{new,unc} > H}\\ \alpha_2^{new,unc}& {L \leq \alpha_2^{new,unc} \leq H}\\ L& {\alpha_2^{new,unc} < L} \end{cases} α2new=Hα2new,uncLα2new,unc>HLα2new,uncHα2new,unc<L
那么应该如何求 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc ? 通过对目标函数求导可以解决。

为了精简推导过程冗长的公式,首先用一些简单的变量表达复杂的式子:
g ( x ) = ∑ j = 1 m α j ∗ y j K ( x , x j ) + b ∗ E i = g ( x i ) − y i = ∑ j = 1 m α j ∗ y j K ( x i , x j ) + b − y i v i = ∑ j = 3 m y j α j K ( x i , x j ) = g ( x i ) − ∑ j = 1 2 y j α j K ( x i , x j ) − b g(x) =\sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x, x_j)+ b^{*}\\E_i = g(x_i)-y_i = \sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x_i, x_j)+ b - y_i \\ v_i = \sum\limits_{j=3}^{m}y_j\alpha_jK(x_i,x_j) = g(x_i) - \sum\limits_{j=1}^{2}y_j\alpha_jK(x_i,x_j) -b g(x)=j=1mαjyjK(x,xj)+bEi=g(xi)yi=j=1mαjyjK(xi,xj)+byivi=j=3myjαjK(xi,xj)=g(xi)j=12yjαjK(xi,xj)b
v 1 , v 2 v_1,v_2 v1,v2 带入,于是目标函数简写为:
W ( α 1 , α 2 ) = 1 2 K 11 α 1 2 + 1 2 K 22 α 2 2 + y 1 y 2 K 12 α 1 α 2 − ( α 1 + α 2 ) + y 1 α 1 v 1 + y 2 α 2 v 2 W(\alpha_1,\alpha_2) = \frac{1}{2}K_{11}\alpha_1^2 + \frac{1}{2}K_{22}\alpha_2^2 +y_1y_2K_{12}\alpha_1 \alpha_2 -(\alpha_1 + \alpha_2) +y_1\alpha_1v_1 + y_2\alpha_2v_2 W(α1,α2)=21K11α12+21K22α22+y1y2K12α1α2(α1+α2)+y1α1v1+y2α2v2
由于 α 1 y 1 + α 2 y 2 = ς , y i 2 = 1 \alpha_1y_1 + \alpha_2y_2 = \varsigma, \quad y_i^2=1 α1y1+α2y2=ς,yi2=1得:
α 1 = y 1 ( ς − α 2 y 2 ) \alpha_1 = y_1(\varsigma - \alpha_2y_2) α1=y1(ςα2y2)
带入 W ( α 1 , α 2 ) W(\alpha_1,\alpha_2) W(α1,α2) 消去 α 1 \alpha_1 α1 ,得:
W ( α 2 ) = 1 2 K 11 ( ς − α 2 y 2 ) 2 + 1 2 K 22 α 2 2 + y 2 K 12 ( ς − α 2 y 2 ) α 2 − ( ς − α 2 y 2 ) y 1 − α 2 + ( ς − α 2 y 2 ) v 1 + y 2 α 2 v 2 W(\alpha_2) = \frac{1}{2}K_{11}(\varsigma - \alpha_2y_2)^2 + \frac{1}{2}K_{22}\alpha_2^2 +y_2K_{12}(\varsigma - \alpha_2y_2) \alpha_2 - (\varsigma - \alpha_2y_2)y_1 - \alpha_2 +(\varsigma - \alpha_2y_2)v_1 + y_2\alpha_2v_2 W(α2)=21K11(ςα2y2)2+21K22α22+y2K12(ςα2y2)α2(ςα2y2)y1α2+(ςα2y2)v1+y2α2v2
这样就是单变量的优化问题,求导后令等于零即可求得 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc
∂ W ∂ α 2 = K 11 α 2 + K 22 α 2 − 2 K 12 α 2 − K 11 ς y 2 + K 12 ς y 2 + y 1 y 2 − 1 − v 1 y 2 + y 2 v 2 = 0 \frac{\partial W}{\partial \alpha_2} = K_{11}\alpha_2 + K_{22}\alpha_2 -2K_{12}\alpha_2 - K_{11}\varsigma y_2 + K_{12}\varsigma y_2 +y_1y_2 -1 -v_1y_2 +y_2v_2 = 0 α2W=K11α2+K22α22K12α2K11ςy2+K12ςy2+y1y21v1y2+y2v2=0
整理后得到:
( K 11 + K 22 − 2 K 12 ) α 2 = y 2 ( y 2 − y 1 + ς K 11 − ς K 12 + v 1 − v 2 ) = y 2 [ y 2 − y 1 + ς K 11 − ς K 12 + ( g ( x 1 ) − ∑ j = 1 2 y j α j K ( x 1 , x j ) − b ) − ( g ( x 2 ) − ∑ j = 1 2 y j α j K ( x 2 , x j ) − b ) ] (K_{11} +K_{22}-2K_{12})\alpha_2 = y_2(y_2-y_1 + \varsigma K_{11} - \varsigma K_{12} + v_1 - v_2) \\ =y_2\left[y_2-y_1 + \varsigma K_{11} - \varsigma K_{12} + \left(g(x_1) - \sum\limits_{j=1}^{2}y_j\alpha_jK(x_1,x_j) -b\right) \\ - \left(g(x_2) - \sum\limits_{j=1}^{2}y_j\alpha_jK(x_2,x_j) -b\right) \right] (K11+K222K12)α2=y2(y2y1+ςK11ςK12+v1v2)=y2[y2y1+ςK11ςK12+(g(x1)j=12yjαjK(x1,xj)b)(g(x2)j=12yjαjK(x2,xj)b)]

上面的式子的累加符号中还存在 α 1 \alpha_1 α1,故将 α 1 = y 1 ( ς − α 2 y 2 ) \alpha_1 = y_1(\varsigma - \alpha_2y_2) α1=y1(ςα2y2) 带入上式:
( K 11 + K 22 − 2 K 12 ) α 2 n e w , u n c = y 2 [ y 2 − y 1 + g ( x 1 ) − g ( x 2 ) + ( α 1 y 1 + α 2 o l d y 2 ) K 11 − ( α 1 y 1 + α 2 o l d y 2 ) K 12 − ( y 1 α 1 K 11 + y 2 α 2 o l d K 12 ) + ( y 1 α 1 K 21 + y 2 α 2 o l d K 22 ) ] = y 2 [ ( K 11 + K 22 − 2 K 12 ) α 2 o l d y 2 + y 2 − y 1 + g ( x 1 ) − g ( x 2 ) ] = ( K 11 + K 22 − 2 K 12 ) α 2 o l d + y 2 ( E 1 − E 2 ) \begin{aligned} (K_{11} +K_{22}-2K_{12})\alpha_2^{new,unc} &=y_2 [ y_2-y_1 +g(x_1)- g(x_2)+(\alpha_1y_1 + \alpha_2^{old}y_2)K_{11}-(\alpha_1y_1 + \alpha_2^{old}y_2 )K_{12}\\ &\quad-(y_1\alpha_1K_{11}+y_2\alpha_2^{old} K_{12})+(y_1\alpha_1K_{21}+y_2\alpha_2 ^{old}K_{22}) ] \\\\&= y_2[(K_{11} +K_{22}-2K_{12})\alpha_2^{old}y_2 +y_2-y_1 +g(x_1) - g(x_2)]\\\\ & = (K_{11} +K_{22}-2K_{12}) \alpha_2^{old} + y_2(E_1-E_2)\\ \end{aligned} (K11+K222K12)α2new,unc=y2[y2y1+g(x1)g(x2)+(α1y1+α2oldy2)K11(α1y1+α2oldy2)K12(y1α1K11+y2α2oldK12)+(y1α1K21+y2α2oldK22)]=y2[(K11+K222K12)α2oldy2+y2y1+g(x1)g(x2)]=(K11+K222K12)α2old+y2(E1E2)
得到:
α 2 n e w , u n c = α 2 o l d + y 2 ( E 1 − E 2 ) K 11 + K 22 − 2 K 12 ) \alpha_2^{new,unc} = \alpha_2^{old} + \frac{y_2(E_1-E_2)}{K_{11} +K_{22}-2K_{12})} α2new,unc=α2old+K11+K222K12)y2(E1E2)
最后再考虑约束条件,于是得到:
α 2 n e w = { H α 2 n e w , u n c > H α 2 n e w , u n c L ≤ α 2 n e w , u n c ≤ H L α 2 n e w , u n c < L \alpha_2^{new}= \begin{cases} H& { \alpha_2^{new,unc} > H}\\ \alpha_2^{new,unc}& {L \leq \alpha_2^{new,unc} \leq H}\\ L& {\alpha_2^{new,unc} < L} \end{cases} α2new=Hα2new,uncLα2new,unc>HLα2new,uncHα2new,unc<L
至于 α 1 n e w \alpha_1^{new} α1new的更新,由 α 1 o l d y 1 + α 2 o l d y 2 = α 1 n e w y 1 + α 2 n e w y 2 = ς \alpha_1^{old}y_1 + \alpha_2^{old}y_2 = \alpha_1^{new}y_1 + \alpha_2^{new}y_2 =\varsigma α1oldy1+α2oldy2=α1newy1+α2newy2=ς,可得:
α 1 n e w = α 1 o l d + y 1 y 2 ( α 2 o l d − α 2 n e w ) \alpha_1^{new} = \alpha_1^{old} + y_1y_2(\alpha_2^{old} - \alpha_2^{new}) α1new=α1old+y1y2(α2oldα2new)
在这一节,我们直接假设选择了 α 1 , α 2 \alpha_1, \alpha_2 α1,α2,实际情况中,要如何选择?

选择两个变量的方法

SMO每次选择的两个变量,其中至少一个违反KKT条件。

第一个变量选择

SMO算法首先遍历数据(称之为外层循环),找到训练集中违反KKT条件最严重的样本点,将其作为第一个变量。

为了简化公式的表达,令:
g ( x ) = ∑ j = 1 m α j ∗ y j K ( x , x j ) + b ∗ g(x) =\sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x, x_j)+ b^{*} g(x)=j=1mαjyjK(x,xj)+b
外层循环的过程中,要检验是否满足KKT条件。具体而言,在一次外层循环中,首先遍历满足 0 < α i ∗ < C ⇒ y i g ( x i ) = 1 0 <\alpha_{i}^{*} < C \Rightarrow y_ig(x_i) = 1 0<αi<Cyig(xi)=1 的点(在间隔边界上的支持向量点),检验是否满足KKT条件。如果都满足,那么遍历整个训练集合,判断是否满足KKT条件。

第二个变量选择

在确定第一个变量 α 1 \alpha_1 α1的条件下,仍然需要循环(内层循环)查找寻找第二个变量 α 2 \alpha_2 α2。由公式可知:
α 2 n e w , u n c = α 2 o l d + y 2 ( E 1 − E 2 ) K 11 + K 22 − 2 K 12 ) \alpha_2^{new,unc} = \alpha_2^{old} + \frac{y_2(E_1-E_2)}{K_{11} +K_{22}-2K_{12})} α2new,unc=α2old+K11+K222K12)y2(E1E2)
可知: α 2 n e w \alpha_2^{new} α2new 依赖于 ∣ E 1 − E 2 ∣ |E_1-E_2| E1E2 。为了加快计算速度,一种简单的做法是选择 α 2 \alpha_2 α2使得 ∣ E 1 − E 2 ∣ |E_1-E_2| E1E2最大。只需要在 E 1 E_{1} E1为正时,循环样本选择最小的 E i E_{i} Ei作为 E 2 E_{2} E2,在 E 1 E_{1} E1为负时,循环样本选择最大的 E i E_{i} Ei作为 E 2 E_{2} E2, 可以将所有的 E i E_{i} Ei保存下来加快迭代。

如果内层循环找到的点不能让目标函数有足够的下降, 可以采用遍历支持向量点来做 α 2 α_2 α2,直到目标函数有足够的下降, 如果所有的支持向量做 α 2 α_2 α2都不能让目标函数有足够的下降,可以跳出循环,重新选择 α 1 α_1 α1

计算阈值b和差值 E i E_i Ei

每次完成两个变量的优化后,都要重新计算阈值 b b b。当 0 < α 1 n e w < C 0<\alpha_1^{new}<C 0<α1new<C 时,由KKT条件: 0 < α i ∗ < C ⇒ y i g ( x i ) = 1 0 <\alpha_{i}^{*} < C \Rightarrow y_ig(x_i) = 1 0<αi<Cyig(xi)=1 可知:
y 1 = ∑ i = 1 N α i y i K i 1 + b 1 y_1 = \sum\limits_{i=1}^{N}\alpha_iy_iK_{i1} +b_1 y1=i=1NαiyiKi1+b1
所以:
b 1 n e w = y 1 − ∑ i = 3 N α i y i K i 1 − α 1 n e w y 1 K 11 − α 2 n e w y 2 K 21 b_1^{new} = y_1 - \sum\limits_{i=3}^{N}\alpha_iy_iK_{i1} - \alpha_{1}^{new}y_1K_{11} - \alpha_{2}^{new}y_2K_{21} b1new=y1i=3NαiyiKi1α1newy1K11α2newy2K21
E 1 E_1 E1 的定义式得:
E 1 = g ( x 1 ) − y 1 = ∑ i = 3 N α i y i K i 1 + α 1 o l d y 1 K 11 + α 2 o l d y 2 K 21 + b o l d − y 1 E_1 = g(x_1) - y_1 = \sum\limits_{i=3}^{N}\alpha_iy_iK_{i1} + \alpha_{1}^{old}y_1K_{11} + \alpha_{2}^{old}y_2K_{21} + b^{old} -y_1 E1=g(x1)y1=i=3NαiyiKi1+α1oldy1K11+α2oldy2K21+boldy1
所以:
y 1 − ∑ i = 3 N α i y i K i 1 = α 1 o l d y 1 K 11 + α 2 o l d y 2 K 21 + b o l d − E 1 y_1 - \sum\limits_{i=3}^{N}\alpha_iy_iK_{i1} = \alpha_{1}^{old}y_1K_{11} + \alpha_{2}^{old}y_2K_{21} + b^{old} - E_1 y1i=3NαiyiKi1=α1oldy1K11+α2oldy2K21+boldE1
带入 b 1 n e w b_1^{new} b1new 的式子得:
b 1 n e w = − E 1 − y 1 K 11 ( α 1 n e w − α 1 o l d ) − y 2 K 21 ( α 2 n e w − α 2 o l d ) + b o l d b_1^{new} = -E_1 -y_1K_{11}(\alpha_{1}^{new} - \alpha_{1}^{old}) -y_2K_{21}(\alpha_{2}^{new} - \alpha_{2}^{old}) + b^{old} b1new=E1y1K11(α1newα1old)y2K21(α2newα2old)+bold
0 < α 2 n e w < C 0<\alpha_2^{new}<C 0<α2new<C 时,同理可得:
b 2 n e w = − E 2 − y 1 K 12 ( α 1 n e w − α 1 o l d ) − y 2 K 22 ( α 2 n e w − α 2 o l d ) + b o l d b_2^{new} = -E_2 -y_1K_{12}(\alpha_{1}^{new} - \alpha_{1}^{old}) -y_2K_{22}(\alpha_{2}^{new} - \alpha_{2}^{old}) + b^{old} b2new=E2y1K12(α1newα1old)y2K22(α2newα2old)+bold
所以:
b n e w = b 1 n e w + b 2 n e w 2 b^{new} = \frac{b_1^{new} + b_2^{new}}{2} bnew=2b1new+b2new
更新 E i E_i Ei:
E i = ∑ S y j α j K ( x i , x j ) + b n e w − y i E_i = \sum\limits_{S}y_j\alpha_jK(x_i,x_j) + b^{new} -y_i Ei=SyjαjK(xi,xj)+bnewyi
其中, S S S 是所有支持向量得集合。

SMO算法

输入:m个样本 ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) , {(x_1,y_1), (x_2,y_2), ..., (x_m,y_m),} (x1,y1),(x2,y2),...,(xm,ym), 其中,$x_i \in \mathcal X = \mathbf R^n $ , y i ∈ Y = − 1 , + 1 , i = 1 , 2 … , N y_i \in \mathcal Y = {-1,+1},i=1,2\ldots,N yiY=1,+1i=1,2,N,精度 ε \varepsilon ε ;

输出:近似解 α ^ \hat \alpha α^

(1)取初值 α ( 0 ) = 0 \alpha^{(0)}=0 α(0)=0 ,令 k = 0 k=0 k=0

(2) 选取优化变量 α 1 k , α 2 k \alpha_1^{k},\alpha_2^{k} α1k,α2k,解析求解两个变量的最优化问题,求解得最优解 α 1 ( k + 1 ) , α 2 ( k + 1 ) \alpha_1^{(k+1)},\alpha_2^{(k+1)} α1(k+1),α2(k+1) ,更新 α \alpha α α k + 1 \alpha^{k+1} αk+1

(3)若在精度 ε \varepsilon ε 范围内满足停机条件:
∑ i = 1 m α i y i = 0 0 ≤ α i ≤ C , i = 1 , 2... m α i k + 1 = 0 ⇒ y i g ( x i ) ≥ 1 0 < α i k + 1 < C ⇒ y i g ( x i ) = 1 α i k + 1 = C ⇒ y i g ( x i ) ≤ 1 \sum\limits_{i=1}^{m}\alpha_iy_i = 0 \\ \quad 0 \leq \alpha_i \leq C, i =1,2...m \\\alpha_{i}^{k+1} = 0 \Rightarrow y_ig(x_i) \geq 1 \\0 <\alpha_{i}^{k+1} < C \Rightarrow y_ig(x_i) = 1 \\\alpha_{i}^{k+1}= C \Rightarrow y_ig(x_i) \leq 1 i=1mαiyi=00αiC,i=1,2...mαik+1=0yig(xi)10<αik+1<Cyig(xi)=1αik+1=Cyig(xi)1
其中:
g ( x ) = ∑ j = 1 m α j ∗ y j K ( x , x j ) + b ∗ g(x) =\sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x, x_j)+ b^{*} g(x)=j=1mαjyjK(x,xj)+b
则转(4),否则令 k = k + 1 k=k+1 k=k+1 ,转(2);

(4)取 α ^ = α ( k + 1 ) \hat \alpha = \alpha^{(k+1)} α^=α(k+1)

参考文章:

《统计学习方法 第二版》

支持向量机原理(四)SMO算法原理

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值