机器学习二一:SMO算法

本文详细介绍了支持向量机(SVM)中的SMO(Sequential Minimal Optimization)算法,包括其基本思想、优化目标函数的过程、二次规划的解析方法以及选择变量的启发式方法。SMO算法通过优化两个变量,逐步求解拉格朗日乘子α,从而找出最佳的分离超平面。文章还阐述了SMO算法的迭代过程和终止条件,帮助理解SVM的优化策略。
摘要由CSDN通过智能技术生成

AI

在SVM的前两篇里,我们优化的目标函数最终都是一个关于α向量的函数。

而怎么极小化这个函数,求出对应的α向量,进而求出分离超平面我们没有讲。

本篇就对优化这个关于α向量的函数的SMO算法做一个总结。

1. 回顾SVM优化目标函数

我们首先回顾下我们的优化目标函数:

 我们的解要满足的KKT条件的对偶互补条件为:

根据这个KKT条件的对偶互补条件,我们有:

 由于

,我们令

则有:

SMO算法的基本思想

由于在目标优化问题中,变量是拉格朗日乘子α i,一个变量 对应于一个样本点(x i,y i) ,且变量的总数等于训练样本容量 m

要解决的是在参数

上求最大值W的问题,这m个变量组成的向量α需要在目标函数极小化的时候求出。

至于

都是已知数。C由我们预先设定,也是已知数

按照坐标上升的思路,我们首先固定除 α1 以外的所有参数,然后在 α1上求极值

等一下,这个思路有问题,因为如果固定以外的所有参数,那么将不再是变量(可以由其他值推出),因为问题中规定了:

因此,我们需要一次选取两个参数做优化,比如 α1 和 α2,此时 α2 可以由 α1 和其他参数表示出来。这样回带到W中,W就只是关于的函数了,可解。

故SMO

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值