SoloGala
码龄8年
求更新 关注
提问 私信
  • 博客:50,029
    50,029
    总访问量
  • 78
    原创
  • 20
    粉丝
  • 72
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2017-06-25
博客简介:

sologala的博客

查看详细资料
个人成就
  • 获得46次点赞
  • 内容获得14次评论
  • 获得113次收藏
  • 代码片获得311次分享
创作历程
  • 2篇
    2024年
  • 2篇
    2023年
  • 3篇
    2022年
  • 4篇
    2021年
  • 7篇
    2020年
  • 59篇
    2019年
  • 1篇
    2018年
成就勋章
TA的专栏
  • SLAM
    1篇
  • 数学
    1篇
  • 日常问题
    4篇
  • CUDA
    1篇
  • 3D
    1篇
  • C++拾遗
    4篇
  • C++市一
  • LaTeX
    1篇
  • 单片机
    1篇
  • PTA 笔记
    35篇
  • LeetCode
    24篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 2

TA参与的活动 0

兴趣领域 设置
  • 数据结构与算法
    排序算法
  • 人工智能
    opencvtensorflowmxnetpytorchscikit-learn聚类
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

windows neovim报错 E576: Error while reading ShaDa file: there is an item at position 270498 that must

删除目录下的所有文件即可。
原创
发布博客 2024.01.11 ·
758 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

windows mingw生成程序抛出 throw_bad_array_new 异常

windows使用mingw编译的任何程序执行时候会抛出 bad_array_new异常。即使一个最贱的程序也是。
原创
发布博客 2024.01.11 ·
456 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

【i18n】国际化

软件需要国际化是为了让它在不同的地区、不同的语言环境下能够适应和满足用户的需求。国际化的目的是使软件具备跨文化、跨地域的能力,使得用户可以在自己熟悉和习惯的语言环境下使用软件,并能够正确理解软件界面、选项、消息和文本内容。“I18n” 是 “Internationalization” 的缩写。数字 “18” 代表 “I” 之间的字符数目。这种缩写方式常用于计算机领域,以简洁方式表示较长的术语或短语。
原创
发布博客 2023.12.23 ·
690 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

ROS catkin合并compile_commands.json

【代码】ROS catkin合并compile_commands.json。
原创
发布博客 2023.09.02 ·
348 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ROS 使用 python3 编译 cv_bridge

确定系统自带的cv_beidge的版本号sudo apt search cv-bridge | grep cv-bridge输出ros-melodic-cv-bridge/bionic,now 1.13.0-0bionic.20220127.152918 amd64记下来版本号是 1.13.01.13.01.13.0创建workspacemkdir -p ~/catkin_ws/srcgit clone https://github.com/ros-perception/vision_op
原创
发布博客 2022.04.04 ·
3373 阅读 ·
0 点赞 ·
1 评论 ·
4 收藏

Markov blanket 马尔科夫毯子

Markov blanket (马尔科夫毯子)指某个变量,在贝叶斯新年网络中的 父节点、子节点、以及节点配偶。节点的配偶指图中 X6X6X6 左右的 X5X5X5 以及 X7X7X7 他们都X6X6X6共同作用与子节点。
原创
发布博客 2022.01.29 ·
2283 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

Ubuntu 安装 cv_bridge with opencv4

问题描述仓库A,可以push,commit,但是在另外一台电脑clone的时候出现以下错误remote: Enumerating objects: 1414, done.remote: Counting objects: 100% (1414/1414), done.remote: Compressing objects: 100% (906/906), done.Connection to github.com closed by remote host.266.00 KiB/s fetch
原创
发布博客 2022.01.24 ·
3788 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

opencv 使用cuda 加速 dnn

编译支持cuda的opencv环境ubuntu 18.04 opencv 4.5.2opencv_contrib 4.5.2nvidia_driver 460.*nvidia_cuda_version 11.2cudnn 8.1安装驱动ubuntu-drivers devices查看可以支持的驱动版本sudo apt install nvidia-driver-460安装 cudahttps://developer.nvidia.com/cuda-downloads 下载对应
原创
发布博客 2021.07.23 ·
1395 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

Undefined symbols for architecture x86_64

Clang++ 出现报错: Undefined symbols for architecture x86_64[build] "cv::Mat::ones(int, int, int)", referenced from:[build] _main in test.cpp.o[build] "cv::Mat::Mat()", referenced from:[build] _main in test.cpp.o[build] "cv::Mat::~M
原创
发布博客 2021.03.09 ·
685 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

三维视觉中的手系

右手准则 Right Hand RuleX 大拇指 (向右)Y 食指 (向上)Z 中指.中指指向自己则为右手系左手系X 大拇指 (向右)Y 食指 (向上)Z 中指.中指指向前方 是左手系不同手系的目的解决向量叉乘的方向。在笛卡尔坐标系下面,两个向量 A×B=CA \times B = CA×B=C , 这能说明 CCC垂直与 AAA BBB 平面,但是CCC 的向量的方向则需要说明,如果定义为右手系,那么 A×B=CA \times B = CA×B=C .
原创
发布博客 2021.01.22 ·
545 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

ipad投屏到linux

ipad投屏到linux[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SnxE5njF-1611062832463)(https://i.loli.net/2021/01/19/728CcND4FqmOsl6.png)]这里使用的开源项目 uxPlay,使用教程:install gstream on Debian(ubuntu)sudo apt-get install libgstreamer1.0-0 gstreamer1.0-plugins-base gstre
原创
发布博客 2021.01.19 ·
3100 阅读 ·
5 点赞 ·
3 评论 ·
8 收藏

二分拾遗

二分法基本代码#bi-searchdata = [1,2,3,3, 3, 4,5,6]#lower_bound# >= x 的第一个数字def lower_bound(data, l , r, x): while (l < r): m = int((l + r) / 2) if data[m] < x: l = m + 1 else: r = m return l#u
原创
发布博客 2020.12.01 ·
96 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

SLAM中的图优化的边的构造

SLAM中的图优化的边的构造在SLAM问题中,使用图优化的方式可以直观的建立与运动观测问题契合的优化模型,相比于滤波的方式,不要求满足马尔科夫性,于是可以将多帧的信息融合优化。个人在阅读SLAM领域优秀开源代码ORB_SLAM的时候,对于核心部分的Optimize.cpp 中使用的一些Vertex与Edge的定义,还有一些不明白,这里记录一下推导的过程。G2O 自带类型types_six_dof_expmap.h 以及 types_seven_dof_expmap.h 中给我们定义了许多的常用SE3
原创
发布博客 2020.11.16 ·
701 阅读 ·
0 点赞 ·
3 评论 ·
2 收藏

RMQ问题(Range Minimum/Maximum Query) 。

RMQ问题(Range Minimum/Maximum Query) 。给定一个 数组, 查询 range(l,r)range(l, r)range(l,r) 中的最大值.Plain algo : 使用 for (int i = l; i<= r; i++) 遍历查找最大值。当数据量大之后,速度十分慢。解决RMQ问题的主要办法分为off-line 以及 on-line的办法。off-line可以预先使用二维dp数组维护区间。使用dp[i][j]dp[i][j]dp[i][j] 表
原创
发布博客 2020.11.09 ·
124 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++ 前置定义 Forward declaration

C++ 前置定义 Forward declaration在编写相对大型的CPP工程的时候,往往我们会遇到一个情况,即:// A.hpp#include "B.hpp"class A{ };// B.hpp#include "A.hpp"class B{};这往往会触发编译器的报错。为了解决这种循环引用头文件的问题,我们可以使用c++的前置引用(forward declaration)。// A.hppclass B; // ** forward declaration **c
原创
发布博客 2020.11.07 ·
1345 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

集合求交集中,vector, set ,unordered_set,的对比试验

文章目录集合求交集中,vector, set ,unordered_set,的对比试验Intersection Method for unordered_setInterseciton Method for vector & setTrialsCode集合求交集中,vector, set ,unordered_set,的对比试验introduction: 对集合进行求交集,是我们常用的操作。STL 也给我们提供了对于常规容器(vector, set等)的intersection 操作sort(
原创
发布博客 2020.11.02 ·
2160 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

typedef 和 using 的区别

typedef功能:定义别名,用于简化复杂的变量类型嵌套,增加代码可读性,便于优化维护。typedef std::vector<std::set<std::unordered_map<size_t, pair<int, int >>>> v_s_mp_int2_ii;using功能:引入命名空间using namespace std;定义别名,类似于typedefusing v_s_mp_int2_ii = std::ve
原创
发布博客 2020.10.31 ·
1997 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Pangolin 无法正确打开x display ,当使用 ssh -X 的时候。

问题说明在开发的时候,我的另外一台电脑(带有显示设备)负责主力计算以及渲染展示(以下称为 server),而主要的编码以及文字工作都交由当前正在使用的macbook pro 来解决(以下称为 client)。在使用 Pangolin 库的时候,出现了无法在 server 上面正确打开窗口的错误。terminal报错如下: what(): Pangolin X11: Failed to open X display但是在我打开server端与client端的 ForwardX11 的情况下 均不
原创
发布博客 2020.08.14 ·
1563 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Mac LaTeX安装与使用

homebrew安装/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"mactex 安装brew cask install mactex需要等待的时间比较长vscode安装与配置安装vscode.在左侧的extension中...
原创
发布博客 2019.11.07 ·
3024 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

牛顿拉弗森迭代法

牛顿拉弗森迭代法原始数学问题​ 在以前的数学家研究函数的根点的时候,牛顿和拉弗森分别都发现了一种使用作图来求解根点的方法。根点 --- 方程的 0 点如下图的f(x)=x2f(x) = x ^ 2f(x)=x2如果我们随机在定义域里面取一个值作为我们的始点 xnx_nxn​ 并且我们做一条经过 (xn,f(xn))(x_n,f(x_n))(xn​,f(xn​)) 的切线如下图...
原创
发布博客 2019.08.28 ·
1075 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多