Fermat's theorem states that for any prime number p and for any integer a > 1, ap =a (mod p). That is, if we raise a to the pth power and divide by p, the remainder isa. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-apseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-apseudoprime.
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
no no yes no yes yes
题意:判断a的p次幂(mod)p是否==a;&&p不是素数
思路:快速幂
AC 答案:
#include<stdio.h>
#include<math.h>
bool hanshu(__int64 t)
{
int i;
for(i=2;i<=sqrt(t);i++)
{
if(t%i==0) return 0;//bu shi su shu
}
return 1;//shi su shu
}
int main()
{
__int64 p,a;
__int64 t,b,sum;
while(~scanf("%I64d%I64d",&p,&a))
{
if(p==0&&a==0) break;
t=p;
b=a;
a=a%p;
sum=1;
while(p>0)
{
if(p%2==1)
{
sum=sum*a%t;
}
p/=2;
a=(a*a)%t;
}
sum=sum%t;
//printf("***%d\n",sum);
if(sum==b)
{
if(hanshu(t)==0)
{
printf("yes\n");
}
else
printf("no\n");
}
else
{
printf("no\n");
}
}
return 0;
}