题目描述 Description
给定N(小于等于8)个点的地图,以及地图上各点的相邻关系,请输出用4种颜色将地图涂色的所有方案数(要求相邻两点不能涂成相同的颜色)
数据中0代表不相邻,1代表相邻
输入描述 Input Description
第一行一个整数n,代表地图上有n个点
接下来n行,每行n个整数,每个整数是0或者1。第i行第j列的值代表了第i个点和第j个点之间是相邻的还是不相邻,相邻就是1,不相邻就是0.
我们保证a[i][j] = a[j][i] (a[i,j] = a[j,i])
输出描述 Output Description
染色的方案数
样例输入 Sample Input
8
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
样例输出 Sample Output
15552
数据范围及提示 Data Size & Hint
n<=8
分类标签 Tags 点此展开
#include <iostream>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <vector>
using namespace std;
vector<int> v[10];
int a[10];
int n;
long long cnt;
void dfs(int cur){
if(cur==n+1){
cnt++;
return;
}
for(int i=1;i<=4;i++){
int flag=0;
for(int j=0;j<v[cur].size();j++){
if(a[v[cur][j]]==i){
flag=1;
break;
}
}
if(flag)
continue;
a[cur]=i;
dfs(cur+1);
a[cur]=0;
}
}
int main(){
scanf("%d",&n);
memset(a,0,sizeof(a));
for(int i=0;i<=n;i++)
v[i].clear();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
int x;
scanf("%d",&x);
if(x){
v[i].push_back(j);
}
}
}
dfs(1);
printf("%lld\n",cnt);
return 0;
}