TensorFlow regularization loss和model.losses

以如下模型为例,

l2_reg = keras.regularizers.l2(0.05)
model = keras.models.Sequential([
    keras.layers.Dense(30, activation="elu", kernel_initializer="he_normal",
                       kernel_regularizer=l2_reg),
    keras.layers.Dense(1, kernel_regularizer=l2_reg)
])

两个Dense层都带有regularizer,因此都有regularization loss项。
访问model.losses可以得到当前的regularization loss

[<tf.Tensor: id=719712, shape=(), dtype=float32, numpy=0.07213736>,
 <tf.Tensor: id=719720, shape=(), dtype=float32, numpy=0.06456626>]

当前状态下第一层和第二层的regularization loss分别是0.07213736和0.06456626。
下面验证一下。L2 regularization下的损失函数的表达式
\(L=\mathrm{error}+\lambda\sum w^2_i\)
其中第二项即regularization loss。

wt = model.layers[1].get_weights()[0]
np.sum(wt**2)*0.05

输出结果0.06456626057624817,等于model.losses的第二项,即第二层的regularization loss.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值