线性代数感悟之8 生成空间和空间的基

引言

最近在看 liuyubobobo 的  线性代数 课,感觉很妙,有些感悟记录一下~~~

生成空间的定义

二维空间中的任何向量,都可以表示为u和v的线性组合,

我们说u和v可以生成整个二维空间。

N个向量是否可以生成整个空间?

这个过程其实是证明n维空间中n个向量可以表示其他任何向量u。

这个过程和证明线性相关的过程是一致的。注意这里的u表示任意的向量!

ps:整个过程使用列视角。

变化成这种形式之后,应该形成条件反射:

  • 1 左边的v矩阵是系数矩阵,
  • 2 k矩阵对应的是x未知数组成的矩阵,
  • 3 u就是等式右边的结果组成的矩阵。
  • 4 将v矩阵和u矩阵组成增广矩阵,当v变成单位矩阵的时候,u就变成了k的值

小结:

        证明N个向量是否可以生成整个空间?就是证明:n维空间中n个向量可以表示其他任何向量u。这就是其实就是证明:n维空间中n个向量是否和其他的任何向量线性相关。

那就是证明,这个矩阵是否有解:

又因为u是任意的向量,所以要考虑所有的情况(u不一定为零,不存在无数解的情况),这么就是求这个系数矩阵有唯一解,或者无解,如果有解就能生成空间,如果无解就是不能生成空间。 

那我们的环里又多了一环:

空间的基 

接下来,我们再看空间的基的概念(这里的基就是基础基本的意思)

如一组向量可以生成整个n为空间,且线性无关,这组向量一定有n个,则称这组向量为这个n维空间的一组基。

假设,m: 向量的个数,n:空间的维度

生成空间 的条件:m>=n

线性无关 的条件:m<=n

空间的基必须满足这两个条件。所以m必须等于n。

线性无关就是线性相关的否命题。

 这个是证明这个齐次方程组只有唯一的0解(也就是k全为0),这是证明线性无关的方法。

 最终你就会发现,证明Ax=0有唯一0解,和证明Ax=b有唯一解是一样的。

也就是说,如果n维空间的n个向量线性无关(Ax=0有唯一0解),那么就一定可以生成n维空间,那么就一定可以表示任意的向量,也就是Ax=b有唯一解!最后你发现只要A可逆,这些结论就都是成立的,由此可见可逆的重要性!

什么样的n个向量无法生成空间?

那么现在反过来思考,什么样的n个向量无法生成n维空间?也就是说,列向量由这n个向量组成的矩阵不可逆。那么什么样的矩阵不可逆呢?答案似乎已经呼之欲出了。

首先思考,什么样的n个向量无法生成n维空间?拿二维空间举类,任意两个不共线的向量都可以生成二维空间,反之,如果两个向量共线,则无法生成二维空间。这是直观的去看就能明白的。

如果v和u共线当然是无法生成空间的。

 如果二维空间中两条向量共线,也就是得到如下矩阵(注意这里使用列视角),这样得到的矩阵是无解的。

因为这样进行高斯消元下面一行 乘以x/y,下面一行就成了0行。明显无解了!

也就是说这样的矩阵是不可逆的。

扩展到四维空间:

1 0 3 0
0 1 5 0
0 0 0 0
0 0 0 1

比如这个矩阵,其中 1 2 3 列的向量不共线,但是共面,对于一个四维空间来说,它不是四维空间的一组基,也一定不可逆。

(感谢bobo老师的答疑)

矩阵不可逆的条件-慕课网 (imooc.com)

 123共面(共面也就是在一个二维空间里面),这里就说明123线性相关了,这就不满足空间的基的定义了,也就是说,这个矩阵不可逆。

那么从共线或者共面这个角度,也可以观察到矩阵是否可逆了。

回头再看这个例子:

u和v是二维空间的一组基,(2 ,2),是系数K,(12,8) 是结果向量。

(2 ,2) 其实就是u和v这组基构建的空间中的值。而(12,8) 是对应的是标准正交基下的向量值。

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code bean

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值