机器学习 Machine Learning中向量化&矩阵化的技巧

1 致谢

感谢 Andrew Ng老师的教授!

2 前言

今天在学习多重线性回归~
感觉向量化&矩阵化是机器学习中很重要的编程技巧,所以这里进行一下归纳~

3 向量化&矩阵化的技巧

3.1 使用矩阵转置实现平方求和运算

在机器学习中,度量loss一个很常见的形式就是使用L2范数,也就是求解预测值与样本值的平方和,
其公式如下,
J ( θ 0 , θ 1 , … , θ n ) = 1 2 m ∑ i = 1 m ( y ^ i − y i ) 2 = 1 2 m ∑ i = 1 m ( h θ ( x i ) − y i ) 2 J(θ_0,θ_1, \dots,θ_n)=\frac{1}{2m}\sum _{i=1}^m(\hat{y}_i − y_i)^2=\frac{1}{2m}\sum _{i=1}^m(h_θ(x_i)−y_i)^2 J(θ0,θ1,,θn)=2m1i=1m(y^iyi)2=2m1i=1m(hθ(xi)yi)2
h θ ( x i ) − y i h_θ(x_i)−y_i hθ(xi)yi常常会被矩阵形式表示,即: X θ − y \boldsymbol{X}θ−y Xθy
于是,产生了 J ( θ ) J(θ) J(θ)函数的向量化公式,即:
J ( θ ) = 1 2 m ( X θ − y ) T ( X θ − y ) J(θ)=\frac{1}{2m}(\boldsymbol{X}θ−y)^T( \boldsymbol{X}θ−y) J(θ)=2m1(Xθy)T(Xθy)
可以看到,这里的平方求和运算被转置运算加上矩阵乘法实现,
于是我们可以归纳一下,当求解向量 v \boldsymbol{v} v的平方和时,即:
f ( v 1 , v 2 , … , v n ) = ∑ i = 1 n v i 2 f(v_1,v_2,\dots,v_n)=\sum _{i=1}^nv_i^2 f(v1,v2,,vn)=i=1nvi2
可以使用转置运算加上矩阵乘法来实现平方和运算的向量化,即:
f ( v ) = v T v f(\boldsymbol{v})=\boldsymbol{v}^T\boldsymbol{v} f(v)=vTv

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值