题目一:
解题思路:
奇数需要拿/ 2 + 1次,偶数需要拿/ 2次
代码实现:
class Solution:
def minCount(self, coins: List[int]) -> int:
res = 0
for a in coins:
res += a // 2
res += a % 2
return res
题目二:
解题思路:
回溯 + 剪枝
走到固定步数,如果是n - 1,则结果个数 + 1,
如果不是,则不继续遍历查找
代码实现:
class Solution:
def numWays(self, n: int, relation: List[List[int]], k: int) -> int:
rec = collections.defaultdict(list)
for a in relation:
rec[a[0]].append(a[1])
res = set()
def numWays_help(k, curr_idx, path, n):
nonlocal rec, res
if k == 0:
if curr_idx == n - 1:
res.add((a for a in path))
return
for a in rec[curr_idx]:
path.append(a)
numWays_help(k - 1, a, path, n)
path.pop()
numWays_help(k, 0, [], n)
return len(res)
题目三:
解题思路:
先根据increase计算出每一天的资源情况
然后对requirements根据求和结果排序,并对排序结果开始遍历
如果一天中的资源之和小于requirements中的资源之和,一定不会符合要求,也一定不会符合requirements后面的要求
代码实现:
class Solution:
def getTriggerTime(self, increase: List[List[int]], requirements: List[List[int]]) -> List[int]:
state_lst = [[0,0,0]]
for a in increase:
b = state_lst[-1][:]
b[0] += a[0]
b[1] += a[1]
b[2] += a[2]
state_lst.append(b[:])
rec = {idx : a for idx, a in enumerate(requirements)}
idx = 0
res = [-1] * len(requirements)
start = 0
for key in sorted(rec, key = lambda x : sum(rec[x])):
last_bigger_start = -1
while start < len(state_lst):
curr_sum = sum(state_lst[start])
if curr_sum < sum(rec[key]):
start += 1
continue
if last_bigger_start == -1:
last_bigger_start = start
if state_lst[start][0] >= rec[key][0] and state_lst[start][1] >= rec[key][1] and state_lst[start][2] >= rec[key][2]:
res[key] = start
break
start += 1
start = last_bigger_start
return res
题目四:
解题思路:
根据题意,jump[i] >= 1,所以最多经过N步,一定可以跳出jump
初始化一个步数列表,初始化的值为N,个数为N
然后开始遍历每一步能够走到的位置
如果某一步跳出了jump数组,则返回K
否则继续遍历
代码实现:
class Solution:
def minJump(self, jump: List[int]) -> int:
jump_len = len(jump)
step_lst = [0] + [jump_len] * jump_len
stack = [0]
left = 0
for step in range(1, jump_len + 1):
new_stack = []
right = max(stack)
while left < right:
if step < step_lst[left]:
step_lst[left] = step
new_stack.append(left)
left += 1
left = right + 1
for pos in stack:
next_pos = pos + jump[pos]
if next_pos >= jump_len:
return step
elif step < step_lst[next_pos]:
step_lst[next_pos] = step
new_stack.append(next_pos)
stack = new_stack[:]
return 0
题目五:
解题思路:
暂无...
在研究,先标记
之后再更新