支持向量机SVM核函数分析

162 篇文章 101 订阅 ¥9.90 ¥99.00

核函数描述和分析

考虑在”回归和梯度下降 中“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点。那么首先需要将特征x扩展到三维 ,然后寻找特征和结果之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作

在这个例子中我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征。这样,我们需要将前面公式中的内积从,映射到。至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的(为了更好地拟合)是其中一个原因,另外的一个重要原因是样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了。所以,将核函数形式化定义。如果原始特征内积是,映射后为

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
支持向量机SVM)是一种常用的机器学习算法,它可以用于分类和回归问题。SVM通过在特征空间中找到一个最优的超平面来进行分类或回归。在SVM中,核函数是一种重要的技术,它可以将数据从原始特征空间映射到一个更高维度的特征空间,从而使得数据在新的特征空间中更容易被线性分割。 常用的核函数有以下几种: 1. 线性核函数(Linear Kernel):线性核函数是最简单的核函数,它将数据映射到原始特征空间,不进行任何变换。线性核函数适用于线性可分的数据集。 2. 多项式核函数(Polynomial Kernel):多项式核函数将数据映射到一个高维的特征空间,并使用多项式函数来计算数据之间的相似度。多项式核函数适用于非线性可分的数据集。 3. 高斯核函数(Gaussian Kernel):高斯核函数也称为径向基函数(Radial Basis Function,RBF),它将数据映射到一个无限维的特征空间,并使用高斯函数来计算数据之间的相似度。高斯核函数适用于非线性可分的数据集。 4. Sigmoid核函数(Sigmoid Kernel):Sigmoid核函数将数据映射到一个无限维的特征空间,并使用Sigmoid函数来计算数据之间的相似度。Sigmoid核函数适用于非线性可分的数据集。 以上是常用的核函数,不同的核函数适用于不同类型的数据集。在实际应用中,选择合适的核函数是非常重要的,它会影响到SVM的分类或回归性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值