总体标准差和样本标准差,numpy和excel对比

评估测量工具的重复性时,常使用标准差作为评价手段。以运动轴为例,通用的测试方法是令其在一定范围内往复运动5次,记录经过一些等间距点(通常是7个点)时的实际位置,然后分析这5次的标准差。

标准差是统计学概念,有总体标准差(population)和样本标准差(sample)之分。

总体标准差的公式为

\sigma_{population}=\sqrt{\frac{\sum_{i=1}^{N}(x_i-\bar{x})^2}{N}}

样本标准差的公式为

\sigma_{sample}=\sqrt{\frac{\sum_{i=1}^{N}(x_i-\bar{x})^2}{N-1}}

可以看到,相同的数据下,样本标准差明显会更大一些,这是由于样本标准差的样本量N只是总体中的一部分,为了实现无偏,要将其稍增大。根据公式可以看出,当样本量N趋于无穷大时,两种标准差是等价的。

实际测量过程中,不可能无限制的采样,如上述的例子,只采集5个样本评价运动轴的重复性,那么需要使用样本标准差。

Excel中的标准差函数较为明确,STDEV用于计算样本标准差,STDEV.P用于计算总体标准差。

Python.Numpy中的函数为np.std,默认计算总体标准差,其参数ddof默认为0。要计算样本标准差需要修改其ddof参数为1。

如下计算1和-1的总体标准差和样本标准差,输出分别为1和1.414

import numpy as np
a = [1,-1]
sigma_popolation = np.std(a)
print(sigma_popolation)
sigma_sample = np.std(a,ddof=1)
print(sigma_sample)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值