评估测量工具的重复性时,常使用标准差作为评价手段。以运动轴为例,通用的测试方法是令其在一定范围内往复运动5次,记录经过一些等间距点(通常是7个点)时的实际位置,然后分析这5次的标准差。
标准差是统计学概念,有总体标准差(population)和样本标准差(sample)之分。
总体标准差的公式为
样本标准差的公式为
可以看到,相同的数据下,样本标准差明显会更大一些,这是由于样本标准差的样本量N只是总体中的一部分,为了实现无偏,要将其稍增大。根据公式可以看出,当样本量N趋于无穷大时,两种标准差是等价的。
实际测量过程中,不可能无限制的采样,如上述的例子,只采集5个样本评价运动轴的重复性,那么需要使用样本标准差。
Excel中的标准差函数较为明确,STDEV用于计算样本标准差,STDEV.P用于计算总体标准差。
Python.Numpy中的函数为np.std,默认计算总体标准差,其参数ddof默认为0。要计算样本标准差需要修改其ddof参数为1。
如下计算1和-1的总体标准差和样本标准差,输出分别为1和1.414
import numpy as np
a = [1,-1]
sigma_popolation = np.std(a)
print(sigma_popolation)
sigma_sample = np.std(a,ddof=1)
print(sigma_sample)