知识图谱

本文探讨了知识图谱的构建过程,特别是自底向上方式的现状与未来,关注实体关系抽取的难点,如准确率与效率的平衡,以及人工与自动方法的协作。介绍了本体构建的半自动策略,语义标注的手动、半自动和自动方法,以及信息抽取、知识融合和Python实践中的Neo4j应用。涵盖了通用知识图谱如DBpedia和领域知识图谱如企业知识图谱的实例,以及技术应用如教育知识图谱和政策智能分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KG

知识图谱的系统工程观
知识图谱从哪里来:实体关系抽取的现状与未来
刘焕勇 - 个人主页:KG 学习资料、工具、开源项目

难点:协调准确率和效率、平衡自动化方法和人工参与

  • 知识图谱构建主要分为自顶向下(top‑down)与自底向上(bottom‑up)两种构建方式。
    自顶向下构建方式需要先定义好本体(Ontology或称为Schema),再基于输入数据(百科类网站等结构化数据源)完成信息抽取到图谱构建的过程。该方法更适用于专业知识方面图谱的构建,比如企业知识图谱,面向领域专业用户使用。
    自底向上构建方式 则是从开放的Open LinkedData中抽取置信度高的知识,或从非结构化文本中抽取知识,完成知识图谱的构建。该方式更适用于常识性的知识,比如人名、机构名等通用知识图谱的构建。
    在这里插入图片描述
    在这里插入图片描述

(〇)本体构建

  • 通常有人工、自动和半自动这 3 种构建方法.
    半自动构建本体的方法,使用统计方法和无监督OpenIE方法得到本体知识,结合其他知识图谱的本体知识,在专家的指导下构建出了本体,并在众包半自动语义标注过程中进行了完善.
    本体模型设计图

  • 【1】 知识图谱本体层理解及利用Protégé进行知识图谱本体层(Schema)的构建

  • 【2】 面向垂直领域的OpenIE图谱构建技术
    在这里插入图片描述

语义标注

  • 主要包括本体技术、自然语言处理等技术.
  • 语义标注可以分为 手工标注、半自动标注 和 自动标注 三类.
    半自动标注是由标注人员指定网页或者网页中的文本片段,然后由标注人员选择合适的本体概念(或属性)或者由系统自动显示可选的本体概念(或属性),最后生成并保存语义标注结果.
  • 语义标注可以分为 嵌入式存储 和 独立存储 两类.
    嵌入式存储方式是指将标注结果嵌入在原始网页中,标注格式可以是 JSON-LD、MicroData、RDFa等,例如 Google 的结构化数据标记辅助工具;
    独立存储方式 是指将标注结果保存在外部存储中,可以保存到文件中,也可以保存到数据库中,例如开源语义标注工具 Pundit,它可以对任何网页进行标注,标注结果将保存在标注系统后端的数据库中.

(一)信息抽取

信息抽取包括实体抽取、关系抽取和属性抽取.

特征选择
  • 通过分词算法对文本中的词汇进行提取,TF-IDF算法进行特征选择
实体抽取的质量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值