基准时间限制:1 秒 空间限制:131072 KB 分值: 0
难度:基础题
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
Input
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
Output
输出符合条件的最小的K。数据中所有K均小于10^9。
Input示例
3 2 1 3 2 5 3
Output示例
23
AC代码:
#include<cstdio>
using namespace std;
const int maxn = 107;
int a[maxn],f[maxn],n;
int extgcd(int a,long long b,int &x,int &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
int d = extgcd(b,a%b,x,y);
int t = x;
x = y;
y = t - a/b*y;
return d;
}
int china(int b[], int w[], int k)
{
int i, d, x, y, a = 0;
long long m,n = 1;
for (i = 1; i <= k; i++)
{
n *= w[i];
}
for (i = 1; i <= k; i++)
{
m = n / w[i];
d = extgcd(w[i], m, x, y);
a = (a + y * m * b[i]) % n;
}
if (a > 0)
{
return a;
}
else
{
return (a + n);
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d",&f[i],&a[i]);
int ans = china(a,f,n);
printf("%d\n",ans);
return 0;
}