51NOD - 1079 中国剩余定理

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。
Input
第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)
Output
输出符合条件的最小的K。数据中所有K均小于10^9。
Input示例
3
2 1
3 2
5 3
Output示例
23
题解:中国剩余定理模板题,注意会爆int。
AC代码:
#include<cstdio>
using namespace std;
const int maxn = 107;
int a[maxn],f[maxn],n;

int extgcd(int a,long long b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int d = extgcd(b,a%b,x,y);
    int t = x;
    x = y;
    y = t - a/b*y;
    return d;
}
int china(int b[], int w[], int k)
{
    int i, d, x, y, a = 0;
    long long m,n = 1;
    for (i = 1; i <= k; i++)
    {
        n *= w[i];
    }
    for (i = 1; i <= k; i++)
    {
        m = n / w[i];
        d = extgcd(w[i], m, x, y);
        a = (a + y * m * b[i]) % n;
    }
    if (a > 0)
    {
        return a;
    }
    else
    {
        return (a + n);
    }
}
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)scanf("%d%d",&f[i],&a[i]);
    int ans = china(a,f,n);
    printf("%d\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值