分治

分治算法

主要思想

分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。把一个复杂的问题分成多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并

分治算法的步骤

  • :递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题)
  • :将这些规模更小的子问题逐个击破
  • :将已解决的子问题逐层合并,最终得出原问题的解
    在这里插入图片描述

分治法适用的情况

  1. 原问题的计算复杂度随着问题的规模的增加而增加
  2. 原问题能够被分解成更小的子问题
  3. 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题
  4. 原问题分解出的子问题的解可以合并为该问题的解
  • 第一条特征绝大多数问题都可以满足,因为问题的计算复杂度一般是随着问题规模的增加而增加。
  • 第二条特征是应用分治法的前提,反映了递归思想的应用,绝大多数问题也可以满足。
  • 第三条特征涉及到了分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地求解公共子问题。此时虽然可用分治法,但一般用动态规划法较好。
  • 第四条特征是关键,能否利用分治法完全取决于问题是否具有第四条特征。如果一个问题具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法

伪代码

def divide_conquer(problem, paraml, param2,...):
    # 终止条件(子问题的边界条件)
    if problem is None:
        print_result
        return
    # 准备数据
    data=prepare_data(problem)
    # 将大问题拆分为小问题
    subproblems=split_problem(problem, data)
    # 处理小问题,得到子结果
    subresult1=self.divide_conquer(subproblems[0],p1,..)
    subresult2=self.divide_conquer(subproblems[1],p1,...)
    subresult3=self.divide_conquer(subproblems[2],p1,...)
    # 对子结果进行合并 得到最终结果
    result=process_result(subresult1, subresult2, subresult3,...)

举例说明

求出一组数据的有序对个数或者逆序对个数

假设有 n n n 个数据,期望数据从小到大排列,那么完全有序的数据( n n n个数严格从小到大排列)的有序度就是 n ( n − 1 ) / 2 n(n-1)/2 n(n1)/2,逆序度等于 0;相反,倒序排列的数据( n n n个数严格从大到小排列)的有序度就是 0,逆序度是 n ( n − 1 ) / 2 n(n-1)/2 n(n1)/2

因为有序对个数和逆序对个数的求解方式是类似的,所以这里可以只思考逆序对(常接触的)个数的求解方法。

  • 方法1

    • 对于数组中的每一个数,统计这个数后面比它小的数的个数,记为 k k k
    • 把每个数字对应的 k k k 值求和,得到的总和就是逆序对个数
    • 这样操作的时间复杂度是 O ( n 2 ) O(n^2) O(n2) ∑ i = 1 n n − i \sum_{i=1}^{n}n-i i=1nni
  • 方法2

  • 将数组分成前后两半,记为 A 1 A1 A1 A 2 A2 A2

  • 分别计算 A 1 A1 A1 A 2 A2 A2 的逆序对个数 K 1 K1 K1 K 2 K2 K2

  • 然后再计算 A 1 A1 A1 A 2 A2 A2 之间的逆序对个数 K 3 K3 K3

  • 数组 A A A 的逆序对个数就等于 K 1 + K 2 + K 3 K1+K2+K3 K1+K2+K3

    注意使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。

    如何快速计算出两个子问题 A 1 A1 A1 A 2 A2 A2 之间的逆序对个数呢?这里使用的是归并排序算法。归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组,在合并的过程中,计算两个小数组的逆序对个数。每次合并操作,都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。

算法应用

多数元素

题目描述:

给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。

示例 1:
输入: [3,2,3]
输出: 3
示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2

解题思路

  • 确定切分的终止条件
    直到所有的子问题都是长度为 1 的数组,停止切分
  • 准备数据,将大问题切分为小问题
    递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,返回该元素
  • 处理子问题得到子结果,并合并子结果
    • 长度为 1 的子数组中唯一的数显然是众数,直接返回即可
    • 如果左右区间的众数相同,那么显然该众数就是这一区间的众数
    • 如果左右区间的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数

代码:

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        # 终止条件
        if not nums:
            return None
        if len(nums) == 1:
            return nums[0]  
        # 拆分问题
        left = self.majorityElement(nums[:len(nums)//2])
        right = self.majorityElement(nums[len(nums)//2:])
        # 处理子问题并合并
        if left == right:
            return left
        else:
            if nums.count(left) > nums.count(right):
                return left
            else:
                return right

优化解法:

采用投票法,用变量 maj 记录多数元素,count 用来计数,遍历 nums 数组,如果遇到和当前 maj 相同的元素则 count 加 1,否则 count 减 1,当 count 减至 0 时,替换 maj 为当前遍历的数。最后得到的 maj 即为该数组的众数。

该方法只对数组进行了一次遍历,时间复杂度为 O ( n ) O(n) O(n)。空间复杂度为 O ( 1 ) O(1) O(1) ,只需要常数级别的额外空间。

因为题目中众数的定义是出现的次数 > [ n / 2 ] >[n/2] >[n/2] 的数,因此保证了投票法是可行的,无论数组的排列顺序是怎样的,众数的出现次数总是大于其他数出现的次数之和

代码:

class Solution:
    def majorityElement(self, nums: List[int]) -> int:
        maj = nums[0]
        count = 1
        for i in range(1,len(nums)):
            if maj == nums[i]:
                count += 1
            else:
                count -= 1
                if count == 0:
                    maj = nums[i]
                    count = 1
        return maj
最大子序和

题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大为6

解题思路:

  • 确定切分的终止条件
    直到所有的子问题都是长度为 1 的数组,停止切分
  • 准备数据,将大问题切分为小问题
    递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
  • 处理子问题得到子结果,并合并子结果
    • 将数组切分为左右区间
    • 对与左区间:从右到左计算左边的最大子序和 ∣ ← | \leftarrow
    • 对与右区间:从左到右计算右边的最大子序和 → ∣ \rightarrow |
    • 由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和 ∣ ← → ∣ | {\leftarrow} {\rightarrow} |
    • 最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值

代码:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        # 确定终止条件
        if not nums:
            return None
        if len(nums) == 1:
            return nums[0]
        # 拆分问题
        left = self.maxSubArray(nums[:len(nums)//2])
        right = self.maxSubArray(nums[len(nums)//2:])
        # 解决子问题
        # 右到左计算左边的最大子序和
        temp = 0
        max_l =nums[len(nums)//2-1] # 最右边的元素
        for i in range(len(nums)//2-1,-1,-1):
            temp += nums[i]
            max_l = max(max_l,temp)
        
        temp = 0
        max_r = nums[len(nums)//2] # 最左边的元素
        for i in range(len(nums)//2,len(nums)):
            temp += nums[i]
            max_r = max(max_r,temp)
        # 合并结果
        return max(left,right,max_l+max_r)
Pow(m,n)

题目描述

实现 p o w ( x , n ) pow(x, n) pow(x,n) ,即计算 x x x n n n 次幂函数。

示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000

说明:
− 100.0 < x < 100.0 -100.0 < x < 100.0 100.0<x<100.0 n n n 32 32 32 位有符号整数,其数值范围是 [ − 2 31 , 2 31 − 1 ] [ -2^{31},2^{31}-1 ] [231,2311].

解题思路

  • 确定切分的终止条件(不妨假设 n ≥ 0 n\ge0 n0 n < 0 n<0 n<0时可以把 p o w ( x , n ) pow(x,n) pow(x,n)视为 p o w ( 1 / x , − n ) pow(1/x,-n) pow(1/x,n)
    n n n 能整除 2 2 2 则更新 n n n n / 2 n/2 n/2,否则更新 n n n n − 1 n-1 n1,直到 n = 0 n = 0 n=0
  • 准备数据,将大问题切分为小问题
    n n n 能整除 2 2 2 则更新 n n n n / 2 n/2 n/2,否则更新 n n n n − 1 n-1 n1
  • 处理子问题得到子结果,并合并子结果
    • 如果 n % 2 = 1 n\%2 =1 n%2=1
      返回 x ∗ p o w ( x , n − 1 ) x*pow(x,n-1) xpow(x,n1)
    • 如果 n % 2 = 0 n\%2=0 n%2=0
      返回 p o w ( x ∗ x , n / 2 ) pow(x*x,n/2) pow(xx,n/2)

代码:

class Solution:
    def myPow(self, x: float, n: int) -> float:
        # 终止条件
        if n == 0:
            return 1
        # 处理n<0的情形
        if n < 0:
            n = -n
            x = 1/x
        # 准备数据,将大问题切分为小问题
        if n%2 == 1: # 处理子问题并合并结果
            return x*self.myPow(x,n-1)
        else:
            return self.myPow(x*x,n/2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值