分治算法
主要思想
分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。把一个复杂的问题分成多个相同或相似的子问题,再把子问题分成更小的子问题直到最后子问题可以简单地直接求解,原问题的解即子问题的解的合并。
分治算法的步骤
- 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题)
- 治:将这些规模更小的子问题逐个击破
- 合:将已解决的子问题逐层合并,最终得出原问题的解
分治法适用的情况
- 原问题的计算复杂度随着问题的规模的增加而增加
- 原问题能够被分解成更小的子问题
- 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题
- 原问题分解出的子问题的解可以合并为该问题的解
- 第一条特征绝大多数问题都可以满足,因为问题的计算复杂度一般是随着问题规模的增加而增加。
- 第二条特征是应用分治法的前提,反映了递归思想的应用,绝大多数问题也可以满足。
- 第三条特征涉及到了分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地求解公共子问题。此时虽然可用分治法,但一般用动态规划法较好。
- 第四条特征是关键,能否利用分治法完全取决于问题是否具有第四条特征。如果一个问题具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
伪代码
def divide_conquer(problem, paraml, param2,...):
# 终止条件(子问题的边界条件)
if problem is None:
print_result
return
# 准备数据
data=prepare_data(problem)
# 将大问题拆分为小问题
subproblems=split_problem(problem, data)
# 处理小问题,得到子结果
subresult1=self.divide_conquer(subproblems[0],p1,..)
subresult2=self.divide_conquer(subproblems[1],p1,...)
subresult3=self.divide_conquer(subproblems[2],p1,...)
# 对子结果进行合并 得到最终结果
result=process_result(subresult1, subresult2, subresult3,...)
举例说明
求出一组数据的有序对个数或者逆序对个数
假设有 n n n 个数据,期望数据从小到大排列,那么完全有序的数据( n n n个数严格从小到大排列)的有序度就是 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2,逆序度等于 0;相反,倒序排列的数据( n n n个数严格从大到小排列)的有序度就是 0,逆序度是 n ( n − 1 ) / 2 n(n-1)/2 n(n−1)/2。
因为有序对个数和逆序对个数的求解方式是类似的,所以这里可以只思考逆序对(常接触的)个数的求解方法。
-
方法1
- 对于数组中的每一个数,统计这个数后面比它小的数的个数,记为 k k k
- 把每个数字对应的 k k k 值求和,得到的总和就是逆序对个数
- 这样操作的时间复杂度是 O ( n 2 ) O(n^2) O(n2)( ∑ i = 1 n n − i \sum_{i=1}^{n}n-i ∑i=1nn−i)
-
方法2
-
将数组分成前后两半,记为 A 1 A1 A1 和 A 2 A2 A2
-
分别计算 A 1 A1 A1 和 A 2 A2 A2 的逆序对个数 K 1 K1 K1 和 K 2 K2 K2
-
然后再计算 A 1 A1 A1 与 A 2 A2 A2 之间的逆序对个数 K 3 K3 K3
-
数组 A A A 的逆序对个数就等于 K 1 + K 2 + K 3 K1+K2+K3 K1+K2+K3
注意使用分治算法其中一个要求是,子问题合并的代价不能太大,否则就起不了降低时间复杂度的效果了。
如何快速计算出两个子问题 A 1 A1 A1 与 A 2 A2 A2 之间的逆序对个数呢?这里使用的是归并排序算法。归并排序中有一个非常关键的操作,就是将两个有序的小数组,合并成一个有序的数组,在合并的过程中,计算两个小数组的逆序对个数。每次合并操作,都计算逆序对个数,把这些计算出来的逆序对个数求和,就是这个数组的逆序对个数了。
算法应用
多数元素
题目描述:
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。
示例 1:
输入: [3,2,3]
输出: 3
示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2
解题思路:
- 确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分 - 准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,返回该元素 - 处理子问题得到子结果,并合并子结果
- 长度为 1 的子数组中唯一的数显然是众数,直接返回即可
- 如果左右区间的众数相同,那么显然该众数就是这一区间的众数
- 如果左右区间的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数
代码:
class Solution:
def majorityElement(self, nums: List[int]) -> int:
# 终止条件
if not nums:
return None
if len(nums) == 1:
return nums[0]
# 拆分问题
left = self.majorityElement(nums[:len(nums)//2])
right = self.majorityElement(nums[len(nums)//2:])
# 处理子问题并合并
if left == right:
return left
else:
if nums.count(left) > nums.count(right):
return left
else:
return right
优化解法:
采用投票法,用变量 maj 记录多数元素,count 用来计数,遍历 nums 数组,如果遇到和当前 maj 相同的元素则 count 加 1,否则 count 减 1,当 count 减至 0 时,替换 maj 为当前遍历的数。最后得到的 maj 即为该数组的众数。
该方法只对数组进行了一次遍历,时间复杂度为 O ( n ) O(n) O(n)。空间复杂度为 O ( 1 ) O(1) O(1) ,只需要常数级别的额外空间。
因为题目中众数的定义是出现的次数 > [ n / 2 ] >[n/2] >[n/2] 的数,因此保证了投票法是可行的,无论数组的排列顺序是怎样的,众数的出现次数总是大于其他数出现的次数之和。
代码:
class Solution:
def majorityElement(self, nums: List[int]) -> int:
maj = nums[0]
count = 1
for i in range(1,len(nums)):
if maj == nums[i]:
count += 1
else:
count -= 1
if count == 0:
maj = nums[i]
count = 1
return maj
最大子序和
题目描述:
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大为6
解题思路:
- 确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分 - 准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回 - 处理子问题得到子结果,并合并子结果
- 将数组切分为左右区间
- 对与左区间:从右到左计算左边的最大子序和 ∣ ← | \leftarrow ∣←
- 对与右区间:从左到右计算右边的最大子序和 → ∣ \rightarrow | →∣
- 由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和 ∣ ← → ∣ | {\leftarrow} {\rightarrow} | ∣←→∣
- 最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值
代码:
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
# 确定终止条件
if not nums:
return None
if len(nums) == 1:
return nums[0]
# 拆分问题
left = self.maxSubArray(nums[:len(nums)//2])
right = self.maxSubArray(nums[len(nums)//2:])
# 解决子问题
# 右到左计算左边的最大子序和
temp = 0
max_l =nums[len(nums)//2-1] # 最右边的元素
for i in range(len(nums)//2-1,-1,-1):
temp += nums[i]
max_l = max(max_l,temp)
temp = 0
max_r = nums[len(nums)//2] # 最左边的元素
for i in range(len(nums)//2,len(nums)):
temp += nums[i]
max_r = max(max_r,temp)
# 合并结果
return max(left,right,max_l+max_r)
Pow(m,n)
题目描述:
实现 p o w ( x , n ) pow(x, n) pow(x,n) ,即计算 x x x 的 n n n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
说明:
−
100.0
<
x
<
100.0
-100.0 < x < 100.0
−100.0<x<100.0 ,
n
n
n 是
32
32
32 位有符号整数,其数值范围是
[
−
2
31
,
2
31
−
1
]
[ -2^{31},2^{31}-1 ]
[−231,231−1].
解题思路:
- 确定切分的终止条件(不妨假设
n
≥
0
n\ge0
n≥0,
n
<
0
n<0
n<0时可以把
p
o
w
(
x
,
n
)
pow(x,n)
pow(x,n)视为
p
o
w
(
1
/
x
,
−
n
)
pow(1/x,-n)
pow(1/x,−n))
若 n n n 能整除 2 2 2 则更新 n n n 为 n / 2 n/2 n/2,否则更新 n n n 为 n − 1 n-1 n−1,直到 n = 0 n = 0 n=0 - 准备数据,将大问题切分为小问题
若 n n n 能整除 2 2 2 则更新 n n n 为 n / 2 n/2 n/2,否则更新 n n n 为 n − 1 n-1 n−1 - 处理子问题得到子结果,并合并子结果
- 如果
n
%
2
=
1
n\%2 =1
n%2=1
返回 x ∗ p o w ( x , n − 1 ) x*pow(x,n-1) x∗pow(x,n−1) - 如果
n
%
2
=
0
n\%2=0
n%2=0
返回 p o w ( x ∗ x , n / 2 ) pow(x*x,n/2) pow(x∗x,n/2)
- 如果
n
%
2
=
1
n\%2 =1
n%2=1
代码:
class Solution:
def myPow(self, x: float, n: int) -> float:
# 终止条件
if n == 0:
return 1
# 处理n<0的情形
if n < 0:
n = -n
x = 1/x
# 准备数据,将大问题切分为小问题
if n%2 == 1: # 处理子问题并合并结果
return x*self.myPow(x,n-1)
else:
return self.myPow(x*x,n/2)