Pandas学习——处理缺失数据

缺失值的统计和删除

缺失信息的统计

缺失数据可以使用 isnaisnull (两个函数没有区别)来查看每个单元格是否缺失,结合 mean 可以计算出每列缺失值的比例:

df = pd.read_csv('G:/代码/joyful-pandas-master/data/learn_pandas.csv',usecols = ['Grade', 'Name', 'Gender', 'Height','Weight', 'Transfer'])
df.isna().head() 
GradeNameGenderHeightWeightTransfer
0FalseFalseFalseFalseFalseFalse
1FalseFalseFalseFalseFalseFalse
2FalseFalseFalseFalseFalseFalse
3FalseFalseFalseTrueFalseFalse
4FalseFalseFalseFalseFalseFalse
df.isna().mean() # 查看缺失的比例 
Grade       0.000
Name        0.000
Gender      0.000
Height      0.085
Weight      0.055
Transfer    0.060
dtype: float64

如果想要查看某一列缺失或者非缺失的行,可以利用 Series 上的 isna 或者 notna 进行布尔索引。例如,查看身高缺失的行:

df[df.Height.isna()].head()
GradeNameGenderHeightWeightTransfer
3SophomoreXiaojuan SunFemaleNaN41.0N
12SeniorPeng YouFemaleNaN48.0NaN
26JuniorYanli YouFemaleNaN48.0N
36FreshmanXiaojuan QinMaleNaN79.0Y
60FreshmanYanpeng LvMaleNaN65.0N
df[df.Height.notna()].head()
GradeNameGenderHeightWeightTransfer
0FreshmanGaopeng YangFemale158.946.0N
1FreshmanChangqiang YouMale166.570.0N
2SeniorMei SunMale188.989.0N
4SophomoreGaojuan YouMale174.074.0N
5FreshmanXiaoli QianFemale158.051.0N

如果想要同时对几个列,检索出全部为缺失或者至少有一个缺失或者没有缺失的行,可以使用 isna, notna 和 any, all 的组合。例如,对身高、体重和转系情况这3列分别进行这三种情况的检索:

sub_set = df[['Height', 'Weight', 'Transfer']]
df[sub_set.isna().all(1)] # 全部缺失 
GradeNameGenderHeightWeightTransfer
102JuniorChengli ZhaoMaleNaNNaNNaN
df[sub_set.isna().any(1)].head() # 至少有一个缺失
GradeNameGenderHeightWeightTransfer
3SophomoreXiaojuan SunFemaleNaN41.0N
9JuniorJuan XuFemale164.8NaNN
12SeniorPeng YouFemaleNaN48.0NaN
21SeniorXiaopeng ShenMale166.062.0NaN
26JuniorYanli YouFemaleNaN48.0N
df[sub_set.notna().all(1)].head() # 没有缺失 
GradeNameGenderHeightWeightTransfer
0FreshmanGaopeng YangFemale158.946.0N
1FreshmanChangqiang YouMale166.570.0N
2SeniorMei SunMale188.989.0N
4SophomoreGaojuan YouMale174.074.0N
5FreshmanXiaoli QianFemale158.051.0N

缺失信息的删除

数据处理中经常需要根据缺失值的大小、比例或其他特征来进行行样本或列特征的删除, pandas 中提供了 dropna 函数来进行操作。

dropna 的主要参数为

  • 轴方向 axis (默认为0,即删除行)
  • 删除方式 how,主要有 any 和 all 两种参数可以选择
  • 删除的非缺失值个数阈值 thresh ( 非缺失值 没有达到这个数量的相应维度会被删除)
  • 备选的删除子集 subset

例如,删除身高体重至少有一个缺失的行:

res = df.dropna(how = 'any', subset = ['Height', 'Weight'])
res.shape 
(174, 6)

例如,删除超过15个缺失值的列:

res = df.dropna(1, thresh=df.shape[0]-15) # 身高被删除
res.head() 
GradeNameGenderWeightTransfer
0FreshmanGaopeng YangFemale46.0N
1FreshmanChangqiang YouMale70.0N
2SeniorMei SunMale89.0N
3SophomoreXiaojuan SunFemale41.0N
4SophomoreGaojuan YouMale74.0N

当然,不用 dropna 同样是可行的,例如上述的两个操作,也可以使用布尔索引来完成:

res = df.loc[df[['Height', 'Weight']].notna().all(1)]
res.shape 
(174, 6)
res = df.loc[:, ~(df.isna().sum()>15)]
res.head() 
GradeNameGenderWeightTransfer
0FreshmanGaopeng YangFemale46.0N
1FreshmanChangqiang YouMale70.0N
2SeniorMei SunMale89.0N
3SophomoreXiaojuan SunFemale41.0N
4SophomoreGaojuan YouMale74.0N

缺失值的填充和插值

利用fillna进行填充

在 fillna 中有三个参数是常用的: value, method, limit。其中, value 为填充值,可以是标量,也可以是索引到元素的字典映射; method 为填充方法,有用前面的元素填充 ffill 和用后面的元素填充 bfill 两种类型, limit 参数表示连续缺失值的最大填充次数。

下面构造一个简单的 Series 来说明用法:

s = pd.Series([np.nan, 1, np.nan, np.nan, 2, np.nan],list('aaabcd'))
s 
a    NaN
a    1.0
a    NaN
b    NaN
c    2.0
d    NaN
dtype: float64
s.fillna(method='ffill') # 用前面的值向后填充 
a    NaN
a    1.0
a    1.0
b    1.0
c    2.0
d    2.0
dtype: float64
s.fillna(method='ffill', limit=1) # 连续出现的缺失,最多填充一次
a    NaN
a    1.0
a    1.0
b    NaN
c    2.0
d    2.0
dtype: float64
s.fillna(s.mean()) # value为标量 
a    1.5
a    1.0
a    1.5
b    1.5
c    2.0
d    1.5
dtype: float64
s.fillna({'a': 100, 'd': 200}) # 通过索引映射填充的值 
a    100.0
a      1.0
a    100.0
b      NaN
c      2.0
d    200.0
dtype: float64

有时为了更加合理地填充,需要先进行分组后再操作。例如,根据年级进行身高的均值填充:

df.groupby('Grade')['Height'].transform(lambda x: x.fillna(x.mean())).head()
0    158.900000
1    166.500000
2    188.900000
3    163.075862
4    174.000000
Name: Height, dtype: float64

Question: 对一个序列以如下规则填充缺失值:如果单独出现的缺失值,就用前后均值填充,如果连续出现的缺失值就不填充,即序列[1, NaN, 3, NaN, NaN]填充后为[1, 2, 3, NaN, NaN],请利用 fillna 函数实现。(提示:利用 limit 参数)

s = pd.Series([1, np.nan, 3, np.nan, np.nan],list('abcde'))
s 
a    1.0
b    NaN
c    3.0
d    NaN
e    NaN
dtype: float64
s.fillna(s.mean(),limit=1) 
a    1.0
b    2.0
c    3.0
d    NaN
e    NaN
dtype: float64

插值函数

在关于 interpolate 函数的文档描述中,列举了许多插值法,包括了大量 Scipy 中的方法。由于很多插值方法涉及到比较复杂的数学知识,因此这里只讨论比较常用且简单的三类情况,即线性插值、最近邻插值和索引插值。

对于 interpolate 而言,除了插值方法(默认为 linear 线性插值)之外,有与 fillna 类似的两个常用参数,一个是控制方向的 limit_direction,另一个是控制最大连续缺失值插值个数的 limit。其中,限制插值的方向默认为 forward ,这与 fillna 的 method 中的 ffill 是类似的,若想要后向限制插值或者双向限制插值可以指定为 backwardboth

s = pd.Series([np.nan,np.nan,1,np.nan,np.nan,np.nan,2,np.nan,np.nan])
s.values
array([nan, nan,  1., nan, nan, nan,  2., nan, nan])

例如,在默认线性插值法下分别进行 backward 和双向限制插值,同时限制最大连续条数为1:

res = s.interpolate(limit_direction='backward', limit=1)
res.values 
array([ nan, 1.  , 1.  ,  nan,  nan, 1.75, 2.  ,  nan,  nan])
res = s.interpolate(limit_direction='both', limit=1)
res.values
array([ nan, 1.  , 1.  , 1.25,  nan, 1.75, 2.  , 2.  ,  nan])

第二种常见的插值是最近邻插补,即缺失值的元素和离它最近的非缺失值元素一样:

s.interpolate('nearest').values 
array([nan, nan,  1.,  1.,  1.,  2.,  2., nan, nan])

最后来介绍索引插值,即根据索引大小进行线性插值。例如,构造不等间距的索引进行演示:

s = pd.Series([0,np.nan,10],index=[0,1,10])
s 
0      0.0
1      NaN
10    10.0
dtype: float64
s.interpolate() # 默认的线性插值,等价于计算中点的值
0      0.0
1      5.0
10    10.0
dtype: float64
s.interpolate(method='index') # 和索引有关的线性插值,计算相应索引大小对应的值 
0      0.0
1      1.0
10    10.0
dtype: float64

同时,这种方法对于时间戳索引也是可以使用的,这里举一个简单的例子:

s = pd.Series([0,np.nan,10],index=pd.to_datetime(['20200101','20200102','20200111']))
s 
2020-01-01     0.0
2020-01-02     NaN
2020-01-11    10.0
dtype: float64
s.interpolate() 
2020-01-01     0.0
2020-01-02     5.0
2020-01-11    10.0
dtype: float64
s.interpolate(method='index') 
2020-01-01     0.0
2020-01-02     1.0
2020-01-11    10.0
dtype: float64

关于polynomial和spline插值的注意事项:

在 interpolate 中如果选用 polynomial 的插值方法,它内部调用的是 scipy.interpolate.interp1d(*,*,kind=order) ,这个函数内部调用的是 make_interp_spline 方法,因此其实是样条插值而不是类似于 numpy 中的 polyfit 多项式拟合插值;而当选用 spline 方法时, pandas 调用的是 scipy.interpolate.UnivariateSpline 而不是普通的样条插值。这一部分的文档描述比较混乱,而且这种参数的设计也是不合理的,当使用这两类插值方法时,用户一定要小心谨慎地根据自己的实际需求选取恰当的插值方法。

Nullable类型

缺失记号及其缺陷

在 python 中的缺失值用 None 表示,该元素除了等于自己本身之外,与其他任何元素不相等:

None == None
True
None == False
False
None == []
False
None == ''
False

在 numpy 中利用 np.nan 来表示缺失值,该元素除了不和其他任何元素相等之外,和自身的比较结果也返回 False :

np.nan == np.nan
False
np.nan == None
False
np.nan == False
False

值得注意的是,虽然在对缺失序列或表格的元素进行比较操作的时候, np.nan 的对应位置会返回 False ,但是在使用 equals 函数进行两张表或两个序列的相同性检验时,会自动跳过两侧表都是缺失值的位置,直接返回 True :

s1 = pd.Series([1, np.nan])
s2 = pd.Series([1, 2])
s3 = pd.Series([1, np.nan])
s1 == 1
0     True
1    False
dtype: bool
s1.equals(s2)
False
s1.equals(s3)
True

在时间序列的对象中,pandas 利用 pd.NaT 来指代缺失值,它的作用和 np.nan 是一致的:

pd.to_timedelta(['30s', np.nan]) # Timedelta中的NaT
TimedeltaIndex(['0 days 00:00:30', NaT], dtype='timedelta64[ns]', freq=None)
pd.to_datetime(['20200101', np.nan]) # Datetime中的NaT
DatetimeIndex(['2020-01-01', 'NaT'], dtype='datetime64[ns]', freq=None)

那么为什么要引入 pd.NaT 来表示时间对象中的缺失呢?仍然以 np.nan 的形式存放会有什么问题?在 pandas 中可以看到 object 类型的对象,而 object 是一种混杂对象类型,如果出现了多个类型的元素同时存储在 Series 中,它的类型就会变成 object 。例如,同时存放整数和字符串的列表:

pd.Series([1, 'two'])
0      1
1    two
dtype: object

NaT 问题的根源来自于 np.nan 的本身是一种浮点类型,而如果浮点和时间类型混合存储,如果不设计新的内置缺失类型来处理,就会变成含糊不清的 object 类型,这显然是不希望看到的。

type(np.nan)
float

同时,由于 np.nan 的浮点性质,如果在一个整数的 Series 中出现缺失,那么其类型会转变为 float64 ;而如果在一个布尔类型的序列中出现缺失,那么其类型就会转为 object 而不是 bool :

pd.Series([1, np.nan]).dtype
dtype('float64')
pd.Series([True, False, np.nan]).dtype
dtype('O')

因此,在进入 1.0.0 版本后, pandas 尝试设计了一种新的缺失类型 pd.NA 以及三种 Nullable 序列类型来应对这些缺陷,它们分别是 Int, boolean 和 string

Nullable类型的性质

从字面意义上看 Nullable 就是可空的,言下之意就是序列类型不受缺失值的影响。例如,在上述三个 Nullable 类型中存储缺失值,都会转为 pandas 内置的 pd.NA :

pd.Series([np.nan, 1], dtype = 'Int64') # "i"是大写的
0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, True], dtype = 'boolean')
0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 'my_str'], dtype = 'string')
0      <NA>
1    my_str
dtype: string

在 Int 的序列中,返回的结果会尽可能地成为 Nullable 的类型:

pd.Series([np.nan, 0], dtype = 'Int64') + 1
0    <NA>
1       1
dtype: Int64
pd.Series([np.nan, 0], dtype = 'Int64') == 0
0    <NA>
1    True
dtype: boolean
pd.Series([np.nan, 0], dtype = 'Int64') * 0.5 # 只能是浮点
0    NaN
1    0.0
dtype: float64

对于 boolean 类型的序列而言,其和 bool 序列的行为主要有两点区别:

  • 第一点是带有缺失的布尔列表无法进行索引器中的选择,而 boolean 会把缺失值看作 False :
s = pd.Series(['a', 'b'])
s_bool = pd.Series([True, np.nan])
s_boolean = pd.Series([True, np.nan]).astype('boolean')
# s[s_bool] # 报错
# ValueError: Cannot mask with non-boolean array containing NA / NaN values
s[s_boolean]
0    a
dtype: object
  • 第二点是在进行逻辑运算时, bool 类型在缺失处返回的永远是 False ,而 boolean 会根据逻辑运算是否能确定唯一结果来返回相应的值。

那什么叫能否确定唯一结果呢?举个简单例子: True | pd.NA 中无论缺失值为什么值,必然返回 True ; False | pd.NA 中的结果会根据缺失值取值的不同而变化,此时返回 pd.NA ; False & pd.NA 中无论缺失值为什么值,必然返回 False 。

s_boolean & True
0    True
1    <NA>
dtype: boolean
s_boolean | True
0    True
1    True
dtype: boolean
~s_boolean # 取反操作同样是无法唯一地判断缺失结果
0    False
1     <NA>
dtype: boolean

关于 string 类型的具体性质将在后面的文本数据中进行讨论。

一般在实际数据处理时,可以在数据集读入后,先通过 convert_dtypes 转为 Nullable 类型:

df = pd.read_csv('G:/代码/joyful-pandas-master/data/learn_pandas.csv')
df = df.convert_dtypes() 
df.dtypes
School          string
Grade           string
Name            string
Gender          string
Height         float64
Weight           Int64
Transfer        string
Test_Number      Int64
Test_Date       string
Time_Record     string
dtype: object

缺失数据的计算和分组

当调用函数 sum, prob 使用加法和乘法的时候,缺失数据等价于被分别视作0和1,即不改变原来的计算结果

s = pd.Series([2,3,np.nan,4,5])
s.sum()
14.0
s.prod()
120.0

当使用累计函数时,会自动跳过缺失值所处的位置:

s.cumsum()
0     2.0
1     5.0
2     NaN
3     9.0
4    14.0
dtype: float64

当进行单个标量运算的时候,除了 np.nan ** 0 和 1 ** np.nan 这两种情况为确定的值之外,所有运算结果全为缺失( pd.NA 的行为与此一致 ),并且 np.nan 在比较操作时一定返回 False ,而 pd.NA 返回 pd.NA :

np.nan == 0
False
pd.NA == 0
<NA>
np.nan > 0
False
pd.NA > 0
<NA>
np.nan + 1
nan
np.log(np.nan)
nan
np.add(np.nan, 1)
nan
np.nan ** 0
1.0
pd.NA ** 0
1
1 ** np.nan
1.0
1 ** pd.NA
1

另外需要注意的是, diff, pct_change 这两个函数虽然功能相似,但是对于缺失的处理不同,前者凡是参与缺失计算的部分全部设为了缺失值,而后者缺失值位置会被设为 0% 的变化率:

s.diff()
0    NaN
1    1.0
2    NaN
3    NaN
4    1.0
dtype: float64
s.pct_change()
0         NaN
1    0.500000
2    0.000000
3    0.333333
4    0.250000
dtype: float64

对于一些函数而言,缺失可以作为一个类别处理,例如在 groupby, get_dummies 中可以设置相应的参数来进行增加缺失类别:

df_nan = pd.DataFrame({'category':['a','a','b',np.nan,np.nan],'value':[1,3,5,7,9]})

df_nan
categoryvalue
0a1
1a3
2b5
3NaN7
4NaN9
df_nan.groupby('category',dropna=False)['value'].mean()
category
a      2
b      5
NaN    8
Name: value, dtype: int64
pd.get_dummies(df_nan.category, dummy_na=True)
abNaN
0100
1100
2010
3001
4001

练习

Ex1:缺失值与类别的相关性检验

在数据处理中,含有过多缺失值的列往往会被删除,除非缺失情况与标签强相关。下面有一份关于二分类问题的数据集,其中 X_1, X_2 为特征变量, y 为二分类标签。

df = pd.read_csv('G:/代码/joyful-pandas-master/data/missing_chi.csv')
df.head() 
X_1X_2y
0NaNNaN0
1NaNNaN0
2NaNNaN0
343.0NaN0
4NaNNaN0
df.isna().mean()
X_1    0.855
X_2    0.894
y      0.000
dtype: float64
df.y.value_counts(normalize=True)
0    0.918
1    0.082
Name: y, dtype: float64

事实上,有时缺失值出现或者不出现本身就是一种特征,并且在一些场合下可能与标签的正负是相关的。关于缺失出现与否和标签的正负性,在统计学中可以利用卡方检验来断言它们是否存在相关性。按照特征缺失的正例、特征缺失的负例、特征不缺失的正例、特征不缺失的负例,可以分为四种情况,设它们分别对应的样例数为 n 11 , n 10 , n 01 , n 00 n_{11},n_{10},n_{01},n_{00} n11,n10,n01,n00。假若它们是不相关的,那么特征缺失中正例的理论值,就应该接近于特征缺失总数 × 总体正例的比例,即:
E 11 = n 11 ≈ ( n 11 + n 10 ) × n 11 + n 01 n 11 + n 10 + n 01 + n 00 = F 11 E_{11} = n_{11} \approx (n_{11}+n_{10})\times\frac{n_{11}+n_{01}}{n_{11}+n_{10}+n_{01}+n_{00}} = F_{11} E11=n11(n11+n10)×n11+n10+n01+n00n11+n01=F11
其他的三种情况同理。现将实际值和理论值分别记作 E i j , F i j E_{ij},F_{ij} Eij,Fij ,那么希望下面的统计量越小越好,即代表实际值接近不相关情况的理论值:
S = ∑ i ∈ { 0 , 1 } ∑ j ∈ { 0 , 1 } ( E i j − F i j ) 2 F i j S = \sum_{i\in \{0,1\}}\sum_{j\in \{0,1\}} \frac{(E_{ij}-F_{ij})^2}{F_{ij}} S=i{0,1}j{0,1}Fij(EijFij)2

可以证明上面的统计量近似服从自由度为 1 的卡方分布,即 S ∼ ⋅ χ 2 ( 1 ) S\overset{\cdot}{\sim} \chi^2(1) Sχ2(1)。。因此,可通过计算 P ( χ 2 ( 1 ) > S ) P(\chi^2(1)>S) P(χ2(1)>S) 的概率来进行相关性的判别,一般认为当此概率小于 0.05 时缺失情况与标签正负存在相关关系,即不相关条件下的理论值与实际值相差较大。的概率来进行相关性的判别,一般认为当此概率小于 0.05 时缺失情况与标签正负存在相关关系,即不相关条件下的理论值与实际值相差较大。

上面所说的概率即为统计学上关于 2×2 列联表检验问题的 p 值, 它可以通过 scipy.stats.chi2(S, 1) 得到。请根据上面的材料,分别对 X_1, X_2 列进行检验。

df = pd.read_csv('G:/代码/joyful-pandas-master/data/missing_chi.csv')
tep1 = df.X_1.fillna('NaN').mask(df.X_1.notna()).fillna("NotNaN")
tep1.head()
0       NaN
1       NaN
2       NaN
3    NotNaN
4       NaN
Name: X_1, dtype: object
tep2 = df.X_2.fillna('NaN').mask(df.X_2.notna()).fillna("NotNaN")
tep2.head()
0    NaN
1    NaN
2    NaN
3    NaN
4    NaN
Name: X_2, dtype: object
df1 = pd.crosstab(tep1, df.y, margins=True)
df1.head() 
y01All
X_1
NaN78570855
NotNaN13312145
All918821000
df2 = pd.crosstab(tep2, df.y, margins=True)
df2.head() 
y01All
X_2
NaN8940894
NotNaN2482106
All918821000
def fs(df):
    s = []
    for i in range(2):
        for j in range(2):
            E = df.iat[i, j]
            F = df.iat[i, 2]*df.iat[2, j]/df.iat[2,2]
            s.append((E-F)**2/F)
    return sum(s) 

res1 = fs(df1)

res2 = fs(df2)

from scipy.stats import chi2

chi2.sf(res1, 1) # X_1检验的p值 # 不能认为相关,剔除
0.9712760884395901
chi2.sf(res2, 1) # X_2检验的p值 # 认为相关,保留
7.459641265637543e-166

Ex2:用回归模型解决分类问题

KNN 是一种监督式学习模型,既可以解决回归问题,又可以解决分类问题。对于分类变量,利用 KNN 分类模型可以实现其缺失值的插补,思路是度量缺失样本的特征与所有其他样本特征的距离,当给定了模型参数 n_neighbors=n 时,计算离该样本距离最近的 n 个样本点中最多的那个类别,并把这个类别作为该样本的缺失预测类别,具体如下图所示,未知的类别被预测为黄色:

上面有色点的特征数据提供如下:

df = pd.read_excel('G:/代码/joyful-pandas-master/data/color.xlsx')
df.head(3)
X1X2Color
0-2.52.8Blue
1-1.51.8Blue
2-0.82.8Blue

已知待预测的样本点为 X1=0.8,X2=−0.2 ,那么预测类别可以如下写出:

from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors=6)
clf.fit(df.iloc[:,:2], df.Color)
KNeighborsClassifier(n_neighbors=6)
clf.predict([[0.8, -0.2]])
array(['Yellow'], dtype=object)
  1. 对于回归问题而言,需要得到的是一个具体的数值,因此预测值由最近的 n 个样本对应的平均值获得。请把上面的这个分类问题转化为回归问题,仅使用 KNeighborsRegressor 来完成上述的 KNeighborsClassifier 功能。

  2. 请根据第1问中的方法,对 audit 数据集中的 Employment 变量进行缺失值插补。

df = pd.read_csv('G:/代码/joyful-pandas-master/data/audit.csv')
df.head(3)
IDAgeEmploymentMaritalIncomeGenderHours
0100464138PrivateUnmarried81838.00Female72
1101022935PrivateAbsent72099.00Male30
2102458732PrivateDivorced154676.74Male40
# 1
from sklearn.neighbors import KNeighborsRegressor

df = pd.read_excel('G:/代码/joyful-pandas-master/data/color.xlsx')

df_dummies = pd.get_dummies(df.Color)

stack_list = []

for col in df_dummies.columns:
    clf = KNeighborsRegressor(n_neighbors=6)
    clf.fit(df.iloc[:,:2], df_dummies[col])
    res = clf.predict([[0.8, -0.2]]).reshape(-1,1)
    stack_list.append(res) 

code_res = pd.Series(np.hstack(stack_list).argmax(1))

df_dummies.columns[code_res[0]]
'Yellow'
# 2
from sklearn.neighbors import KNeighborsRegressor

df = pd.read_csv('G:/代码/joyful-pandas-master/data/audit.csv')

res_df = df.copy()

df = pd.concat([pd.get_dummies(df[['Marital', 'Gender']]),df[['Age','Income','Hours']].apply(lambda x:(x-x.min())/(x.max()-x.min())), df.Employment],1)

X_train = df.query('Employment.notna()')

X_test = df.query('Employment.isna()')

df_dummies = pd.get_dummies(X_train.Employment)

stack_list = []

for col in df_dummies.columns:
    clf = KNeighborsRegressor(n_neighbors=6)
    clf.fit(X_train.iloc[:,:-1], df_dummies[col])
    res = clf.predict(X_test.iloc[:,:-1]).reshape(-1,1)
    stack_list.append(res)

code_res = pd.Series(np.hstack(stack_list).argmax(1))

cat_res = code_res.replace(dict(zip(list(range(df_dummies.shape[0])),df_dummies.columns)))

res_df.loc[res_df.Employment.isna(), 'Employment'] = cat_res.values

res_df.isna().sum()
ID            0
Age           0
Employment    0
Marital       0
Income        0
Gender        0
Hours         0
dtype: int64
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值