实例79:使用去噪自编码网络提取MNIST特征

该博客介绍了如何利用自编码器进行数据去噪,特别是在MNIST手写数字数据集上。通过在输入数据中添加高斯噪声,然后训练自编码网络,以学习在保留原始信息的同时去除噪声。模型包含隐藏层和Dropout层以防止过拟合。在训练过程中,使用Adam优化器最小化重构误差。最终,展示了经过解码器处理后的图像,结果显示模型能够有效地过滤掉噪声并恢复原始图像。
摘要由CSDN通过智能技术生成

本例为一个简单的自编码模型,让784维只通过一层256维。将原始的数据进行一些变换,每个像素点都乘以一个高斯噪声,然后再输出的位置仍然使用原始的输入样本,这样迫使网络在提取特征的同时将噪声去掉。为了防止其过拟合,还需要加入Dropout层。

实例描述

对MNIST集原始输入图片加入噪声,在自编码网络中进行训练,以得到抗干扰更强的特征提取模型。

1.引入头文件,创建网络模型及定义学习参数变量


import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

#导入数据集
mnist = input_data.read_data_sets("/data/", one_hot=True)

#加载图片和标签
train_X   = mnist.train.images
train_Y = mnist.train.labels
test_X    = mnist.test.images
test_Y  = mnist.test.labels

#定义每层维度
n_input    = 784 
n_hidden_1 = 256 

#占位符
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_input])
dropout_keep_prob = tf.placeholder("float")

#学习参数
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_hidden_1, n_input]))
}
biases = {
    'b1': tf.Variable(tf.zeros([n_hidden_1])),
    'b2': tf.Variable(tf.zeros([n_hidden_1])),
    'out': tf.Variable(tf.zeros([n_input]))
}

#网络模型   
def denoise_auto_encoder(_X, _weights, _biases, _keep_prob):
    
    #定义编码
    layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) 
    #dropout
    layer_1out = tf.nn.dropout(layer_1, _keep_prob)    

    #定义中间层
    layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1out, _weights['h2']), _biases['b2'])) 
    layer_2out = tf.nn.dropout(layer_2, _keep_prob) 
    
    #解码
    return tf.nn.sigmoid(tf.matmul(layer_2out, _weights['out']) + _biases['out'])

reconstruction = denoise_auto_encoder(x, weights, biases, dropout_keep_prob)
#cost计算
cost = tf.reduce_mean(tf.pow(reconstruction-y, 2))
#定义优化器
optm = tf.train.AdamOptimizer(0.01).minimize(cost) 

加入了dropout的学习参数来定义dropout层

2.设置学习参数,开始训练

#定义训练参数
epochs     = 20
batch_size = 256
disp_step  = 2

#开始训练
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    
    print ("开始训练")
    for epoch in range(epochs):
        #获取每批的数量
        num_batch  = int(mnist.train.num_examples/batch_size)
        total_cost = 0.
        for i in range(num_batch):

3.生成噪声数据

在这里做了添加噪声的操作,每层取出一批次的数据,将输入数据的每一个像素都加上0.3倍的高斯噪声。

 #批次数据
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            #对数据添加噪声
            batch_xs_noisy = batch_xs + 0.3*np.random.randn(batch_size, 784)
            _, _lost =sess.run(optm, cost, feed_dict= {x: batch_xs_noisy, y: batch_xs, dropout_keep_prob: 1.})
            total_cost+=_lost
        
         # 显示训练日志
        if epoch % disp_step == 0:
            print ("Epoch %02d/%02d average cost: %.6f" 
                   % (epoch, epochs, total_cost/num_batch))
      
    print ("完成")

4.数据可视化

 #定义展现数目
    show_num = 10
    #加了噪声的数据
    test_noisy = mnist.test.images[:show_num] + 0.3*np.random.randn(show_num, 784)
    #解码器生成的数据
    encode_decode = sess.run(reconstruction, feed_dict={x: test_noisy, dropout_keep_prob: 1.})
         
    f, a = plt.subplots(3, 10, figsize=(10, 3))
    for i in range(show_num):
        #噪声数据,原始数据,生成的数据
        a[0][i].imshow(np.reshape(test_noisy[i], (28, 28)))
        a[1][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
        a[2][i].matshow(np.reshape(encode_decode[i], (28, 28)), cmap=plt.get_cmap('gray'))

    plt.show()

在这里插入图片描述
第一行是加入噪声后的图片,第二行是原始图片,第三行为解码的图片。
可以函数,输出的图片还能看出原来的样子,而且将噪声大部分过滤掉了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值