外贸干货|外贸获客关键词搜索技巧

搜索客户,是外贸人具备的基本技能之一,大多数外贸人都应该使用过外贸获客软件搜索客户。

在使用外贸软件智能搜索找客户时,输入“关键词”进行智能搜索时,能帮助您找到优质的潜在目标客户信息,不过,在搜索过程中,搜索结果和关键词有直接关系,输入的恰当,搜出来的目标客户信息就会精准。

如果碰到数据不匹配不够精准的情况下,大多数原因是搜索“关键词”出错了,因为这也是需要技巧的!

微信图片_202107271702272.jpg

今天我给大家总结了几个关于搜索客户时关键词的技巧:

1.   关键词的单复数

在定义关键词时,要注意单复数的使用,无论是经销商、制造商或批发商,产品都是成批生产或交易的,在描述时一般都会使用复数,所以使用复数的关键词,搜索结果会相对精确。

2.   精准定义关键词

找准关键词在目标客户国家内的叫法。我们在搜索时,一般会把产品名称直接用翻译工具翻译成各国的语言再搜索。但翻译工具往往是字面直译,由于各国的文化背景、语言环境、用语习惯不同,我们在搜索时要考虑到该产品当地人常用的叫法、名称等。

同样是英文,中国叫法与外国叫法可能完全不同,关键词是搜索工作的第一步,这部分信息不准确,数据精准度也会偏低,那么如何准确定义关键词呢,建议可以浏览国外同行网站,切记,这是个相当重要的环节!尤其是在使用区域引擎时,正确的关键词很重要。

3.   关键词的延展性

使用关键词时思维不要仅仅局限于产品的翻译名称,应该根据产品和目标客户以及各种不同的组合,往更广泛的范围去定义。比如找配件的经销商客户,不要只限于找跟您自身产品完全相同的客户,可以寻找一些综合类或者是比这个产品的面更广的配件经销商的关键词。

4.   “关键词”和“词组”的区别

如果把box camera这个词输入“关键词”搜索,结果会优先出现两个词在一起的网页信息,然后只有box的网站也会出现,只有camera的网站也会出现。

如果把box camera这个词输入“词组”搜索,搜索结果就是只有这两个词在一起的网页信息才出现,单独一个的不会出现。

5.   变化关键词组合

变化关键词组合,能出现更多新的信息结果。

比如,搜索国外汽车配件相关客户,可用的关键词组合包括: “ auto parts” “auto repair” “auto service” “auto accessories” “auto electric” ”auto parts” +Australia ”auto parts” +Japan ”auto parts” +Korea 等等, 可以变化的很多很多,包括用国家名组合、产品名组合等等,总之,要尽量多的变化关键词,才能更好地匹配更多客户信息。

微信图片_20210727170227.jpg

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值