LangChain实战技巧之三:关于Tool的一点拓展

    (几乎)任一LLM在bind_tools时,都是习惯先定义一个Function或BaseTool,然后再bind(bind_tools)具体方式可参考我的这篇文章

AI菜鸟向前飞 — LangChain系列之十三 - 关于Tool的必知必会

    但这里的tool未必需要Function或BaseTool,例如,BaseModel也可以

通过convert_to_openai_function把转换成dict(也有人称json),再bind也行,我的公众号也有描述这种方式

BaseModel(Pydantic)

  • bind_tools

    先定义

# 我们首先定义一个BaseModel
class Info(BaseModel):
    """ 个人信息 """
    nickname: str = Field(description="昵称")
    name: str = Field(descrip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值