信息论和交叉熵损失函数

在机器学习和深度学习中,很多时候需要进行分类,这时会涉及到决策边界,比如sigmod激活函数;
但是当面对多分类的时候(比如经典的MNIST),我们需要预测每一个种类output的概率,比如softmax,这时候我们需要对:
信息论和交叉熵有一个清晰的认识
那么我们的文章将会对 信息论和交叉熵损失函数 进行一个讲解;

1.信息论
2.自信息
3.香农熵
4.交叉熵

1.信息论
1.1 信息论是从物理学中借鉴过来的,我们只讲其数学意义:

其实信息论是一种用来描述 概率分布或者蒋概率分布之间的相似性 的一种思想
信息论的核心思想就是用来表示 意外程度 ,即小概率事件发生的信息量大

  • 1.必然事件的信息量为0
  • 2.事件发生的概率越小,其提供的信息量就越大
  • 3.信息是具有增量的特征的,即同一事件,发生一次的信息量是 I I I ,则重复投递两次的信息量是 2 I 2I 2I
    那么为了实现我们的目的 将概率事件的信息量进行量化
2.自信息

就是单个事件的信息量的量化值

我们构建这样一个公式:
I ( x ) = − l o g ( p ( x ) ) I(x) = -log(p(x)) I(x)=log(p(x))

  • 这里 P ( x ) P(x) P(x)就是随机事件 X = x X = x X=x 时候事件发生的概率
  • l o g 对 数 函 数 式 增 函 数 , 那 么 − l o g 函 数 就 是 减 函 数 log对数函数式增函数,那么-log函数就是减函数 log,log,这样构建出来的函数就实现了我们的某种目的,随着概率的减小,信息量就越大
    但是自信息仅能预测一个事件的信息量
  • I ( x ) I(x) I(x)的单位是奈特 n a t nat nat,就是说1 n a t nat nat代表以 1 / e 1/e 1/e概率的一个事件的自信息量
3.香农熵

往往在我们的实际应用中我们需要使用 香农熵 来对整个事件概率分布中的不确定性总量进行量化

在这里我们可以借鉴 随机变量X的数学期望的求值公式
E ( X ) = − ∑ k = 1 ∞ x k p k E(X) =- \sum_{k = 1}^{∞}x_kp_k E(X)=k=1xkpk
这里的香农熵其实可以看做是: 信息量 I ( x ) I(x) I(x)的数学期望的求值公式
H ( X ) = − ∑ k = 1 n x k l o g ( p k ) H(X) = -\sum_{k = 1}^{n}x_klog(p_k) H(X)=k=1nxklog(pk)

  • 这里k是类别,n代表总类别

下面我们举例说明:

  • 数组1: 111111

  • 数组2: 111222

  • 数组3: 112233

我们来算数组1 ,2 和 3的香农熵

H ( 1 ) = − 1 ∗ l o g ( p ( 1 ) ) = − 1 ∗ 0 = 0 H(1)=-1*log(p(1)) = -1 * 0= 0 H(1)=1log(p(1))=10=0

H ( 2 ) = − 1 / 2 ∗ l o g ( p ( 1 ) ) + ( − 1 / 2 ∗ l o g ( p ( 2 ) ) = − 1 / 2 ∗ I n 1 / 2 + 1 / 2 ∗ I n 1 / 2 ≈ 0.7 H(2)=-1/2*log(p(1)) + (-1/2*log(p(2)) = -1/2 * In1/2 +1/2 * In1/2 ≈ 0.7 H(2)=1/2log(p(1))+(1/2log(p(2))=1/2In1/2+1/2In1/20.7

H ( 3 ) = ( − 1 / 3 ∗ l o g ( p ( 1 ) ) + ( − 1 / 3 ∗ l o g ( p ( 2 ) ) + ( − 1 / 3 ∗ l o g ( p ( 3 ) ) ≈ 1 H(3)=(-1/3*log(p(1)) + (-1/3*log(p(2)) + (-1/3*log(p(3)) ≈ 1 H(3)=(1/3log(p(1))+(1/3log(p(2))+(1/3log(p(3))1

这样来看数组1的香农熵为0,则为必然事件,数组2居中,数组3最大,则其概率分布的概率最小

4.交叉熵

前面我们有讲到 自信息香农熵
那么如何用到机器学习和深度学习中呢,不着急慢慢往下看
我们记得之前在多类别分类的模型中我们有用到 s o f t m a x softmax softmax 进行每个类别概率估计,然后取最大概率做为预测值
而当我们反向更新 s o f t m a x softmax softmax为激活函数的模型或者神经网络时候,是将交叉熵做为 l o s s 函 数 loss函数 loss进行梯度调节的

那么让我们聚焦交叉熵
在这之前我们需要看下 K L KL KL散列,这是基于香农熵用来衡量对于同一个随机变量X的两个单独分布 P ( X ) 和 Q ( X ) P(X)和Q(X) P(X)Q(X)的差异的途径:
D k l ( P ∣ ∣ Q ) = E x − p [ l o g ( P ( x ) / Q ( x ) ) ] = E x − p [ l o g ( P ( x ) ) − l o g ( Q ( x ) ) ] D_{kl}(P||Q) = E_{x-p}[log(P(x)/Q(x))] = E_{x-p}[log(P(x))-log(Q(x))] Dkl(PQ)=Exp[log(P(x)/Q(x))]=Exp[log(P(x))log(Q(x))]
但是在深度学习中我们使用 K L KL KL散列的变形,也就是交叉熵来作为某些场景的 l o s s loss loss函数,即:

H ( P , Q ) = H ( P ) + D K L ( P ∣ ∣ Q ) H(P,Q) = H(P) + D_{KL}(P||Q) H(P,Q)=H(P)+DKL(PQ)
根据 K L KL KL散列我们队上述公式进行变形:
H ( P , Q ) = − E x − p [ l o g P ( x ) ] + E x − p [ l o g P ( x ) ] − E x − p [ l o g Q ( x ) ] H(P,Q) = -E_{x-p}[logP(x)] + E_{x-p}[logP(x)] - E_{x-p}[logQ(x)] H(P,Q)=Exp[logP(x)]+Exp[logP(x)]Exp[logQ(x)]
经过变形就得到:

H ( P , Q ) = − E x − p [ l o g Q ( x ) ] H(P,Q) = - E_{x-p}[logQ(x)] H(P,Q)=Exp[logQ(x)]
接着,我们变化成易于理解的 l o s s loss loss函数
H ( P , Q ) = − ∑ x P ( x ) l o g Q ( x ) H(P,Q) = -\sum_{x}P(x)logQ(x) H(P,Q)=xP(x)logQ(x)
到这里我们看到了我们熟悉的成本函数, s o f t m a x softmax softmax回归分类器的成本函数

接着我们探讨为什么使用这个成本函数

主要是softmax等多分类器,在评估真实值( y y y)和预测值( y e x c p t y^{excpt} yexcpt)距离时,更多的是在评估概率之间的距离,这样使用传统的均方根误差做为 l o s s loss loss函数毫无意义

我们来举个例子(以MNIST为例: 识别0~9的数字图片):
假设输出层是 s o f t m a x softmax softmax为激活函数:

那么我们假设用两组标签相同的实例 A 和 B A和B AB 来进行分析
首先我们的 l a b e l label label都是0,所以真实值得向量组合是(1,0,0,0,0,0,0,0,0,0)

  • A的预测值向量组合(0.9,0.2,0.1,0,0,0,0,0,0,0)
  • B的预测值向量组合(0.8,0,0.1,0,0.5,0,0,0,0,0)

接着算A和B的交叉熵(也就是 l o s s loss loss函数) :
H ( P , Q ) = − ( 1 ∗ l o g ( 0.9 ) + 0 ∗ l o g ( 0.2 ) + 0 ∗ l o g ( 0.1 ) + 7 ∗ ( 0 ∗ l o g ( 0 ) ) ≈ 0.1 H(P,Q) = -(1* log(0.9) + 0 * log(0.2) + 0 *log(0.1) + 7 * (0 * log(0)) ≈ 0.1 H(P,Q)=(1log(0.9)+0log(0.2)+0log(0.1)+7(0log(0))0.1
H ( P , Q ) = − ( 1 ∗ l o g ( 0.8 ) + 0 ∗ l o g ( 0.1 ) + 0 ∗ l o g ( 0.5 ) + 7 ∗ ( 0 ∗ l o g ( 0 ) ) ≈ 0.2 H(P,Q) = -(1* log(0.8) + 0 * log(0.1) + 0 *log(0.5) + 7 * (0 * log(0)) ≈ 0.2 H(P,Q)=(1log(0.8)+0log(0.1)+0log(0.5)+7(0log(0))0.2

  • P代表真实值
  • Q代表预测值
    因为 0.1 < 0.2 0.1 < 0.2 0.1<0.2,所以明显第一组要由于第二组

补充一点:交叉熵 H ( P , Q ) H(P,Q) H(P,Q)不是对称的,所以 H ( P , Q ) ≠ H ( Q , P ) H(P,Q) ≠ H(Q,P) H(P,Q)=H(Q,P)所以要注意P和Q的顺序,一版情况下,P代表真实值,Q代表预测值

最近很热,大家谨防中暑,但是学习不能断 ^^

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值