[机器学习入门] 李宏毅机器学习笔记-11(Convolutional Neural Network;卷积神经网络)

本文介绍了为何使用CNN处理图像,因为其能识别小的图像模式且相同模式在不同区域出现,同时,下采样像素不会改变对象。文章深入探讨了CNN的卷积过程、彩色图像处理、池化层、Keras中的实现以及CNN学习的内容,包括Deep Dream、Deep Style,并提及在围棋、语音和文本等领域的应用。
摘要由CSDN通过智能技术生成

[机器学习入门] 李宏毅机器学习笔记-11(Convolutional Neural Network;卷积神经网络)

PDF VIDEO

Why CNN for Image?

CNN 经常作用于图像识别。

这里写图片描述

Some patterns are much smaller than the whole image

这里写图片描述

The same patterns appear in different regions

同样的pattern,在image里面,他可能会出现在image不同的部分,但是它们代表的是同样的含义,同样的形状,也有同样的neural,同样的参数,detector就可以侦测出来。

这里写图片描述

Subsampling the pixels will not change the object

做Subsampling使图片变小对影响辨识没什么影响


The whole CNN

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值