
路径规划
文章平均质量分 90
space_dandy
算法
展开
-
模型预测控制在路径规划中的应用
1.模型预测控制(Model Predictive Control)MPC的作用机理可以表述为:在每一个采样时刻,根据当前的测量信息,在线求解一个有限时间开环优化问题,并将得到的控制序列的第一个元素用于被控对象;在下一个采样时刻,用新的测量值作为此时预测系统未来动态的初试条件,刷新优化问题求解。应用于机器人的典型的模型预测控制方法:问题模型参数空间上述问题的目的是找到最优的uuu使得上式最小化。工程问题中系统输入是随意变化的量,因此需要将无限维度的系统输入转化为有限维度的参数,常用的方法有原创 2021-03-11 16:49:46 · 4275 阅读 · 0 评论 -
路径规划——软/硬约束下的轨迹优化
Minimum Snap是轨迹优化中的常用方法,其效果如下:上图中红线为Minimum Snap优化生成的光滑轨迹,可以看出Minimum Snap有利于光滑曲线的生成。该算法虽然可以控制轨迹经过哪些路标点,但是没有考虑环境中的障碍物信息(如图中红色方块),不利于做避障。软/硬约束硬约束硬约束要求严格满足上述等式约束或不等式约束。软约束软约束将约束加入在目标函数里,即加入惩罚项。1.硬约束轨迹优化1.1 Corridor-based 轨迹优化(基于走廊的)论文名称:Online原创 2021-03-09 16:48:42 · 7783 阅读 · 0 评论 -
路径规划-Minimum snap轨迹优化
传统的路径规划pipeline包括路径搜索和轨迹优化两部分。轨迹优化的目的是生成光滑轨迹,其必要性如下:适合移动机器人的自主移动速度和加速度等动力学状态无法突变移动机器人不必在拐角处加速和减速节约能量1.预备知识1.1 轨迹优化的一般过程存在边界条件:起始点和终止点中间节点:包括A∗A^*A∗、RRT∗RRT^*RRT∗寻找到的中继节点平滑规则:给出一个评价函数评价轨迹的光滑程度1.2 微分平坦(Differential Flatness)微分平坦对于非线性系统来说,可以类原创 2021-03-08 17:56:51 · 6006 阅读 · 2 评论 -
路径规划算法——状态栅格规划器(State Lattice Planner)
状态栅格规划器(State Lattice Planner)是一种基于采样的满足动力学约束的路径规划算法。1. 为什么需要建立运动学模型传统的路径规划包括前端的路径搜索和后端的轨迹优化两部分。以上图无人机的路径规划为例,紫色实线为没有动力学约束的条件下搜索的轨迹,考虑到无人机实际运动的速度、加速度等动力学约束, 实际轨迹优化后规划的运动轨迹如紫色虚线所示;而在满足动力学约束的条件下,搜索的路径和优化的轨迹分别如绿色实线和虚线所示,可以看出,绿色路径更为合理。2. 状态栅格规划器的基本思想A*原创 2021-03-05 16:00:06 · 7215 阅读 · 2 评论 -
路径规划算法——基于采样
基于采样的路径规划算法1.快速搜索随机树快速搜索随机树(RRT)算法从起始点开始,在地图上进行随机采样,然后根据采样点信息,结合障碍物检测等约束条件,构建一棵搜索书,直到树的枝叶延伸至目标点或者达到预设的采样次数为止...原创 2021-03-05 09:52:01 · 3443 阅读 · 0 评论 -
路径规划中常用的地图结构
对于移动机器人中的地图,常见的数据结构包括:1.栅格地图将空间中连续的地图在X、Y轴上(3D地图中还包含Z轴)进行离散化,得到一系列栅格,每个栅格只有占据、空闲和未知三个状态。3D栅格地图2.5D栅格地图栅格地图结构化且有序,可以直接使用位置索引查询位置状态,查询的时间复杂度为O(1),其工具箱参考地址为:栅格地图2.八叉树使用一种递归、轴对齐且空间间隔的数据结构。假设空间为一个立方体,立方体中有一个小障碍物,将立方体分成八个小立方体,对包含障碍物的地方体急需进行分割,直到达到我们想要的精原创 2021-03-01 15:23:31 · 6489 阅读 · 0 评论 -
路径规划算法——图搜索法
图搜索法依靠已知的环境地图以及地图中的障碍物信息构造从起点到终点的路径,包括深度优先和广度优先两个方向。Dijkasta算法该算法使用了广度优先搜索,解决赋权有向图或无向图的单源最短路径问题,算法最终得到一个最短路径树。算法思路将地图抽象为Graph数据结构,实际应用场景中,地图各个路径代表的Graph的边的权重不同,例如将距离长的边权重低、拥堵的权重低。算法采用贪心策略,声明了一个数组保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合T。算法开始时,原点s的路径权重设置为0(原创 2021-02-23 14:15:58 · 6808 阅读 · 0 评论