论文阅读:Visibility in BadWeather from a Single Image(未完)

论文题目及作者

1. 摘要

    本文提出的方法基于两个基本观察结果:首先,视觉效果好的图像(或晴天图像)比受恶劣天气影响的图像具有更高的对比度;其次,主要取决于物体到摄像机距离的大气光,在全局而言是平滑的。依靠这两个观察,本文在马尔可夫随机场的框架中开发了一个成本函数,可以通过各种技术(例如图割或置信传播)有效地优化该函数。该方法不需要输入图像的几何信息,并且适用于彩色和灰度图像。
    本文不打算完全恢复场景的原始颜色或反照率,目标是仅增强输入图像的对比度,从而改善图像可见性。

2. 光学模型

    通常用于处理恶劣天气(尤其是计算机视觉)的光学模型描述为:
I ( x ) = L ∞ ρ ( x ) e − β d ( x ) + L ∞ ( 1 − e − β d ( x ) ) (1) \mathbf{I}(x) = \mathbf{L}_{\infty} \boldsymbol{\rho}(x) e^{- \beta d(x)} + \mathbf{L}_{\infty} (1- e^{- \beta d(x)}) \tag{1} I(x)=Lρ(x)eβd(x)+L(1eβd(x))(1)

    其中, L ∞ \mathbf{L}_{\infty} L为大气光,为全局常数,和 x x x无关。

2.1 色度定义

    本文的方法中,打算使用色度来描述等式 ( 1 ) (1) (1),因此定义图像色度如下:
σ c = I c I r + I g + I b (2) \sigma_c = \frac{I_c}{I_r + I_g + I_b} \tag{2} σc=Ir+Ig+IbIc(2)

    当物体在无限远的距离时( d = ∞ , e − β d = 0 d = \infty, e^{-\beta d} = 0 d=,eβd=0),图像色度仅与大气光有关,此时称为大气光色度。大气光色度定义如下:
α c = L ∞ c L ∞ r + L ∞ g + L ∞ b (3) \alpha_c = \frac{L_{\infty c}}{L_{\infty r} + L_{\infty g} + L_{\infty b}} \tag{3} αc=Lr+Lg+LbLc(3)

    当没有散射粒子时( e − β d = 1 e^{-\beta d} = 1 eβd=1),图像色度仅与直接衰减有关,此时称为物体色度。由 ( 1 ) ( 2 ) (1)(2) (1)(2)物体色度定义如下:
γ c = L ∞ c ρ c L ∞ r ρ r + L ∞ g ρ g + L ∞ b ρ b (4) \gamma_c = \frac{L_{\infty c} \rho_c}{L_{\infty r} \rho_r + L_{\infty g} \rho_g + L_{\infty b} \rho_b} \tag{4} γc=Lrρr+Lgρg+LbρbLcρc(4)

    由 ( 3 ) ( 4 ) (3)(4) (3)(4),根据色度重新定义 ( 1 ) (1) (1)
I ( x ) = D ( x ) e − β d ( x ) γ ( x ) + A ( x ) α (5) \mathbf{I}(x) = D(x) e^{- \beta d(x)} \boldsymbol{\gamma}(x) + A(x) \boldsymbol{\alpha} \tag{5} I(x)=D(x)eβd(x)γ(x)+A(x)α(5)

    其中:
D ( x ) = L ∞ r ρ r ( x ) + L ∞ g ρ g ( x ) + L ∞ b ρ b ( x ) (6) D(x) = L_{\infty r} \rho_r(x) + L_{\infty g} \rho_g(x) + L_{\infty b} \rho_b(x) \tag{6} D(x)=Lrρr(x)+Lgρg(x)+Lbρb(x)(6)

A ( x ) = ( L ∞ r + L ∞ g + L ∞ b ) ( 1 − e − β d ( x ) ) (7) A(x) = (L_{\infty r} + L_{\infty g} + L_{\infty b})(1 - e^{- \beta d(x)}) \tag{7} A(x)=(Lr+Lg+Lb)(1eβd(x))(7)

     D D D A A A为标量, γ \boldsymbol{\gamma} γ α \boldsymbol{\alpha} α为归一化的颜色向量。根据色度定义,可知 [ ∑ σ c = σ r + σ g + σ b = 1 ] [\sum \sigma_c = \sigma_r + \sigma_g+ \sigma_b = 1] [σc=σr+σg+σb=1] [ ∑ γ c = γ r + γ g + γ b = 1 ] [\sum \gamma_c = \gamma_r + \gamma_g+ \gamma_b = 1] [γc=γr+γg+γb=1] [ ∑ α c = α r + α g + α b = 1 ] [\sum \alpha_c = \alpha_r + \alpha_g+ \alpha_b = 1] [αc=αr+αg+αb=1]

2.2 大气光

    在许多恶劣天气中,尤其是在通常阴云密布的日光下,我们可以忽略太阳光的存在,并假定大气光( L ∞ \mathbf{L}_{\infty} L)是全局恒定的。根据 ( 1 ) (1) (1),可以从输入图像中具有最高强度的像素获得 L ∞ \mathbf{L}_{\infty} L的全局值。 因为这些像素代表无限远的物体( d = ∞ d = \infty d=),假设可以在图像中看到天空并且图像没有饱和像素。 因此,通过将 L ∞ \mathbf{L}_{\infty} L的值代入公式 ( 3 ) (3) (3),具有 L ∞ \mathbf{L}_{\infty} L的值使我们能够获得光色度( α \boldsymbol{\alpha} α)的值。

    找到图像中像素值最大的点,该像素三个通道的值即为三个通道的大气光值。

2.3 大气光白化

    通过利用大气光光色度( α \boldsymbol{\alpha} α),将 ( 5 ) (5) (5)中的每个颜色通道的强度处于相应的 α c {\alpha}_c αc,将输入图像的大气光的颜色转换为白色。即:
I c ′ ( x ) = I c ( x ) / α c (8) I_c^\prime (x) = I_c(x) / \alpha_c \tag{8} Ic(x)=Ic(x)/αc(8)

I c ′ ( x ) =   D ( x ) e − β d ( x ) γ c ( x ) α c ( x ) + A ( x ) =   D ( x ) e − β d ( x ) γ c ′ ( x ) + A ( x ) (9) \begin{aligned} I_c^\prime (x) =& \ D(x) e^{- \beta d(x)} \frac{{\gamma}_c(x)}{\alpha_c(x)} + A(x) \\ =& \ D(x) e^{- \beta d(x)} {{\gamma}_c^\prime(x)} + A(x) \end{aligned} \tag{9} Ic(x)== D(x)eβd(x)αc(x)γc(x)+A(x) D(x)eβd(x)γc(x)+A(x)(9)

     γ c ′ {\gamma}_c^\prime γc为归一化的物体色度, I c ′ I_c^\prime Ic为归一化的输入图像,即大气光为白色。 ( 9 ) (9) (9)写成向量形式:
I ′ ( x ) = D ( x ) γ ′ ( x ) e − β d ( x ) + A ( x ) [ 1 1 1 ] (10) \mathbf{I}^\prime(x) = D(x) \boldsymbol{\gamma^\prime}(x) e^{- \beta d(x)} + A(x)\begin{bmatrix} 1 \\ 1 \\ 1\end{bmatrix} \tag{10} I(x)=D(x)γ(x)eβd(x)+A(x)111(10)

     I ′ \mathbf{I}^\prime I γ ′ \boldsymbol{\gamma^\prime} γ为向量,其余为标量。

3. 问题定义

    假设已经得到 I ′ ( x ) \mathbf{I}^\prime(x) I(x) L ∞ \mathbf{L}_{\infty} L的值,根据 ( 10 ) (10) (10)可知,本文的目标即计算整幅图像 D ( x ) γ ′ ( x ) D(x) \boldsymbol{\gamma^\prime}(x) D(x)γ(x)的值。

转换成求 A A A

    计算 D γ ′ D\boldsymbol{\gamma^\prime} Dγ等价与计算 A A A。从 A A A计算 D γ ′ D\boldsymbol{\gamma^\prime} Dγ的步骤如下:

Step (1): 由 ( 7 ) (7) (7)
e − β d ( x ) = ∑ c L ∞ c − A ( x ) ∑ c L ∞ c (11) e^{- \beta d(x)} = \frac{\sum_c L_{\infty c} - A(x)}{\sum_c L_{\infty c}} \tag{11} eβd(x)=cLccLcA(x)(11)

    其中, ∑ c L ∞ c = L ∞ r + L ∞ g + L ∞ b \sum_c L_{\infty c} = L_{\infty r} + L_{\infty g} + L_{\infty b} cLc=Lr+Lg+Lb

Step (2): 由 ( 10 ) (10) (10):
D ( x ) γ ′ ( x ) = ( I ′ ( x ) − A ( x ) [ 1 1 1 ] ) e β d ( x ) (12) D(x) \boldsymbol{\gamma^\prime}(x) = (\mathbf{I}^\prime(x) - A(x)\begin{bmatrix} 1 \\ 1 \\ 1\end{bmatrix})e^{\beta d(x)} \tag{12} D(x)γ(x)=(I(x)A(x)111)eβd(x)(12)
    首先计算 A A A,因为它独立于物体反射率( ρ \boldsymbol{\rho} ρ),并且仅取决于深度 d d d(假设 β \beta β γ ′ \boldsymbol{\gamma^\prime} γ全局恒定),所以很容易计算出 A A A

4.

    考虑下列三个观察:

  1. 输出图像 D γ ′ D\boldsymbol{\gamma^\prime} Dγ比输入图像 I \mathbf{I} I有更好的对比度。
  2. A A A值的变化仅取决于物体的深度 d d d,这意味着具有相同深度的物体将具有相同的 A A A值,而与其反射率( ρ \boldsymbol{\rho} ρ)无关。 因此,相邻像素的 A A A值趋于相同。另外,在许多情况下,在很小的局部图像块中, A A A的变化非常平缓。除了深度不连续的像素,而这种情况相对较少。
  3. 受恶劣天气困扰的输入图像通常是在室外自然场景中拍摄的。 因此, D γ ′ D\boldsymbol{\gamma^\prime} Dγ的值必须遵循晴天自然图像的特征。

4.1 最大化对比度

    对于观察1,结合图像边缘数量,定义图像对比度:
C e d g e ( I ) = ∑ x , c ∣ ∇ I c ( x ) ∣ (13) C_{edge}(\mathbf{I}) = \sum\limits_{x,c}| \nabla I_c(x) | \tag{13} Cedge(I)=x,cIc(x)(13)

    其中, ∇ \nabla x x x轴和 y y y轴上的微分算子。该方程式意味着对比度高的图像会产生更多的边缘。换句话说,清晰图像比受恶劣天气影响的图像具有更多的边缘: C e d g e ( D γ ′ ) > C e d g e ( I ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) > C_{edge}(\mathbf{I^\prime}) Cedge(Dγ)>Cedge(I)
    通过前面分析,知道了 D γ ′ D\boldsymbol{\gamma^\prime} Dγ可以通过 A A A求得。根据 ( 7 ) (7) (7),可知: 0 ≤ A ( x ) ≤ ∑ c L ∞ c ( x ) 0 \le A(x) \le \sum_c L_{\infty c}(x) 0A(x)cLc(x)。因此,如果有一个包含具有相同深度且受恶劣天气影响的物体的小图像块 p \boldsymbol{\mathbf{p}} p,则存在一个标量值 A A A,通过该 A A A可以计算出 D γ ′ D\boldsymbol{\gamma^\prime} Dγ D γ ′ D\boldsymbol{\gamma^\prime} Dγ必须满足如下约束:
C e d g e ( D γ ′ ) > C e d g e ( p ) (14) C_{edge}(D\boldsymbol{\gamma^\prime}) > C_{edge}(\boldsymbol{\mathbf{p}}) \tag{14} Cedge(Dγ)>Cedge(p)(14)

    整幅图的边缘数量一定大于局部块的边缘数量

0 ≤ D γ c ′ ≤ L ∞ c (15) 0 \le D {\gamma_c^\prime} \le L_{\infty c} \tag{15} 0DγcLc(15)

    懵,因为按如下计算,得不出该结果。
    结合 ( 3 ) ( 4 ) (3)(4) (3)(4),可得:
γ c ′ = γ c α c = ρ c ∑ c ( L ∞ c ) ∑ c ( L ∞ c ρ c ) \gamma_c^\prime = \frac{\gamma_c}{\alpha_c} = \frac{\rho_c \sum_c (L_{\infty c})}{\sum_c (L_{\infty c}\rho_c)} γc=αcγc=c(Lcρc)ρcc(Lc)

    且 D = ∑ c ( L ∞ c ρ c ) D = \sum_c (L_{\infty c}\rho_c) D=c(Lcρc),所以可得:
D γ c ′ = ρ c ∑ c ( L ∞ c ) D \gamma_c^\prime = \rho_c \sum_c (L_{\infty c}) Dγc=ρcc(Lc)

    因为 0 ≤ ρ c ≤ 1 0 \le \rho_c \le 1 0ρc1,所以有 D γ c ′ ≤ ∑ c ( L ∞ c ) D \gamma_c^\prime \le \sum_c (L_{\infty c}) Dγcc(Lc),而不是 D γ c ′ ≤ L ∞ c D {\gamma_c^\prime} \le L_{\infty c} DγcLc。直接将 ( 3 ) × ( 4 ) (3) \times (4) (3)×(4),可以得到 D γ c ≤ L ∞ c D {\gamma_c} \le L_{\infty c} DγcLc,也不是 D γ c ′ ≤ L ∞ c D {\gamma_c^\prime} \le L_{\infty c} DγcLc。这里没看懂。

    图1左侧显示了晴天的自然图像,右侧为人工渲染雾的图像,该图像大气光设定为常数。选择人造雾图中的一个小方块(红色框部分), A A A取所有可能值,并计算出相应的 C e d g e ( D γ ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) Cedge(Dγ),图2中绘制二者的关系图。 如图所示, C e d g e ( D γ ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) Cedge(Dγ)随着 A A A的增加而增加,并在达到一定峰值后下降。 这种快速下降主要是由于施加了第二个约束 ( 15 ) (15) (15)

自然图像和人工雾图

图1 自然图像和人工雾图

大气光和清晰图像边缘数量的关系

图2 大气光和清晰图像边缘数量的关系

    从天气条件恶劣的场景中拍摄的每个图像块,只要该图像块中具有纹理,则 C e d g e ( D γ ′ ) > 0 C_{edge}(D\boldsymbol{\gamma^\prime}) > 0 Cedge(Dγ)>0。证明如下。由 ( 13 ) ( 12 ) ( 11 ) (13)(12)(11) (13)(12)(11),得:
C e d g e ( D γ ′ ) =   ∑ x , c ∣ ( I x , c ′ − A ) e β d − ( I x − 1 , c ′ − A ) e β d ∣ =   e β d ∑ x , c ∣ ( I x , c ′ − I x − 1 , c ′ ) ∣ =   ∑ c L ∞ c ∑ c L ∞ c − A ∑ x , c ∣ ( I x , c ′ − I x − 1 , c ′ ) ∣ \begin{aligned} C_{edge}(D\boldsymbol{\gamma^\prime}) =& \ \sum\limits_{x,c} | (I_{x,c}^\prime - A)e^{\beta d} - (I_{x-1,c}^\prime - A)e^{\beta d}| \\ =& \ e^{\beta d} \sum\limits_{x,c} |(I_{x,c}^\prime - I_{x-1,c}^\prime)| \\ =& \ \frac{\sum_c L_{\infty c}}{\sum_c L_{\infty c} - A} \sum\limits_{x,c} |(I_{x,c}^\prime - I_{x-1,c}^\prime)| \end{aligned} Cedge(Dγ)=== x,c(Ix,cA)eβd(Ix1,cA)eβd eβdx,c(Ix,cIx1,c) cLcAcLcx,c(Ix,cIx1,c)

     L ∞ \mathbf{L}_{\infty} L是常数且 ∑ x , c ∣ ( I x , c ′ − I x − 1 , c ′ ) ∣ \sum\limits_{x,c} |(I_{x,c}^\prime - I_{x-1,c}^\prime)| x,c(Ix,cIx1,c)在同一图像块中有相同值,所以 C e d g e ( D γ ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) Cedge(Dγ) A A A成比例。这解释了图2中上升的原因。由于第二个限制 ( 15 ) (15) (15),当 D γ c ′ > L ∞ c D {\gamma_c^\prime} > L_{\infty c} Dγc>Lc,定义 D γ c ′ = 0 D {\gamma_c^\prime} = 0 Dγc=0。所以 C e d g e ( D γ ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) Cedge(Dγ)将会减少尽管 A A A仍在增加。

    这里也没看懂。

    在提高可见性的框架中,使用 C e d g e ( D γ ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) Cedge(Dγ)作为成本函数。 虽然最大数量的 C e d g e ( D γ ′ ) C_{edge}(D\boldsymbol{\gamma^\prime}) Cedge(Dγ)并不总是代表 A A A的实际值,但它代表了输入图像的增强的可见性。 如引言中所述,本文不打算在晴天恢复图像的原始颜色或反射率。 我们的主要目的是在恶劣天气下增强场景的可见性,并在某种程度上对场景的颜色进行准确度测试。

4.2 大气光平滑约束

    根据观察2,整幅图像上 A A A的变化对于大多数像素而言都趋于平滑。可使用马尔可夫随机场(MRFs)对大气光 A A A进行建模。MRFs的势函数定义如下:
E ( { A x } ∣ p x ) = ∑ x ϕ ( p x ∣ A x ) + η ∑ x , y ∈ N x ψ ( A x , A y ) (16) E(\{ A_x \}| \boldsymbol{\mathbf{p}}_x) = \sum\limits_{x} \phi(\boldsymbol{\mathbf{p}}_x | A_x) + \eta \sum\limits_{x,y \in N_x} \psi(A_x, A_y) \tag{16} E({Ax}px)=xϕ(pxAx)+ηx,yNxψ(Ax,Ay)(16)

    其中 p x \boldsymbol{\mathbf{p}}_x px是一个以位置 x x x为中心的图像块,假定它具有 A x A_x Ax的恒定值(即 A x ≡ A ( x ) A_x \equiv A(x) AxA(x))。 η \eta η是平滑项的强度, N x N_x Nx代表 x x x的近邻像素。 ( 16 ) (16) (16)中前一项为数据项,后一项为平滑项。数据项定义如下:
ϕ ( p x ∣ A x ) = C e d g e ( [ D γ ′ ] x ∗ ) m (17) \phi(\boldsymbol{\mathbf{p}}_x | A_x) = \frac{C_{edge}([D\boldsymbol{\gamma^\prime}]_{x}^{*})}{m} \tag{17} ϕ(pxAx)=mCedge([Dγ]x)(17)

    其中,将 A X A_X AX的每一个带入到 ( 11 ) ( 12 ) (11)(12) (11)(12),得到 [ D γ ′ ] x ∗ [D\boldsymbol{\gamma^\prime}]_{x}^{*} [Dγ]x。而 m m m得取值依赖于 p x \mathbf{p}_x px得大小。平滑项定义如下:
ψ ( A x , A y ) = 1 − ∣ A x − A y ∣ ∑ c L ∞ c (18) \psi(A_x, A_y) = 1 - \frac{|A_x - A_y|}{\sum_c L_{\infty c}} \tag{18} ψ(Ax,Ay)=1cLcAxAy(18)

    该项得目的在于平滑 A x A_x Ax的邻近。
    为了找到 A x {A_x} Ax的所有值,我们必须通过使用现有的推理技术(例如图割或信念传播)来最大化Gibbs分布中描述的 p ( A x ) p({A_x}) p(Ax)的概率分布。

    还是折在这里了,看不下去了。可恶的马尔可夫随机场。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值