2020年中国研究生数学建模竞赛E题

本文关注大雾天气下的能见度预测,通过建立能见度与气象因素的关系模型,利用深度学习处理视频数据来估计能见度,并通过视频中的景深信息开发能见度估计算法,最终预测大雾的演变趋势。
摘要由CSDN通过智能技术生成

探索大雾演化规律,预测大雾变化趋势

能见度是气象、公路行车、飞机飞行中常见指标,单位通常是米。影响能见度的因素主要是雾和霾。众所周知,能见度对高速公路行车安全非常重要,当能见度很低时,为了行车安全,高速公路管理者通常的做法是封路。而在航空领域,习惯用跑道能见度反映机场附近雾和霾的大小,其定义为在跑道的一端沿跑道方向能辨认出跑道或接近跑道的目标物(夜间为跑道边灯)的最大距离。一般情况下,当机场能见度只有400米左右时,会禁止航班起降。当机场能见度只有600-800米左右时航班虽然可以正常起降。但出于安全考虑,机场会采取临时控制航班流量的措施,拉大航班起飞间隔,容易造成航班延误。因此,能见度预测是高速公路管理部门和航空公司十分关注的问题。

激光能见度仪是常用的检测能见度的仪器。目前,我国高速路网已逐步形成,若大量使用激光能见度仪对全国高速路网进行全覆盖将耗资巨大,同时激光能见度仪还存在对团雾检测精度不高,探测的范围很小,维护成本高等不足。近年来,基于视频的路况(跑道)能见度检测方法受到人们的关注,它某种程度上克服了激光能见度仪的不足。视频能见度检测方法是将大气光学分析与图像处理及人工智能技术结合,通过对视频图像的分析处理,建立视频图像与真实场景之间的关系,再根据图像特征的变化,间接计算出能见度数值。但现有的基于视频图像的能见度检测方法,由于是间接计算,很难准确地估算能见度。特别地,这些方法中大多数只选取少量视频、截取图像中的某些固有特征【1,2】,基于Koschmieder定律【3,4】进行估计,并没有充分利用视频的连续信息,所以估计的精度不高,有较大的改进空间。

由于一般情况下,能见度究竟是2000米还是3000米对公路行车、飞机飞

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值