使用Faster RCNN训练自己的数据集,过程不太顺利,踩坑数次,所以把流程记录一下。
所使用的代码版本:faster-rcnn.pytorch
1.源码及环境配置
原Github版本使用的Pytorch==0.4.0,但是看了网上的博客记录这个版本有较多错误无法解决,建议使用Pytorch==1.0.0及以上版本;
- 源码
Pytorch0.4.0版源码:https://github.com/jwyang/faster-rcnn.pytorch.git
Pytorch1.0.0版源码:https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0
- 环境配置
Ubuntu16.04
Python==3.6 + Pytorch==1.2.0
由于CUDA版本向下兼容,所以这里不作特殊说明.
- 使用Anaconda安装虚拟环境
conda create -n faster-rcnn python=3.6
在Pytorch官网中找到对应的Pytorch与torchvision版本:
# CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0
如图所示,此时cudatoolkit=10.0也会自动安装。
- 安装其他环境依赖
pip install -r requirements.txt
2.预训练模型编译
- 新建文件夹
(注:本文将原文件夹重命名为faster-rcnn)在文件夹中新建dat