使用Faster RCNN训练自己的数据集

本文详细记录了使用Faster R-CNN训练自己数据集的过程,包括环境配置、预训练模型编译、数据集准备、训练及测试步骤。遇到的问题包括源码与Pytorch版本兼容性、COCO API的缺失、Scipy版本冲突等,并提供了解决方案。训练完成后,通过指定参数进行模型测试。
摘要由CSDN通过智能技术生成

使用Faster RCNN训练自己的数据集,过程不太顺利,踩坑数次,所以把流程记录一下。

所使用的代码版本:faster-rcnn.pytorch

1.源码及环境配置

原Github版本使用的Pytorch==0.4.0,但是看了网上的博客记录这个版本有较多错误无法解决,建议使用Pytorch==1.0.0及以上版本;

  • 源码

Pytorch0.4.0版源码:https://github.com/jwyang/faster-rcnn.pytorch.git

Pytorch1.0.0版源码:https://github.com/jwyang/faster-rcnn.pytorch/tree/pytorch-1.0

  • 环境配置

Ubuntu16.04

Python==3.6 + Pytorch==1.2.0

由于CUDA版本向下兼容,所以这里不作特殊说明.

  • 使用Anaconda安装虚拟环境
conda create -n faster-rcnn python=3.6

Pytorch官网中找到对应的Pytorch与torchvision版本:

# CUDA 10.0
conda install pytorch==1.2.0 torchvision==0.4.0

如图所示,此时cudatoolkit=10.0也会自动安装。

  • 安装其他环境依赖
pip install -r requirements.txt

2.预训练模型编译

  • 新建文件夹

(注:本文将原文件夹重命名为faster-rcnn)在文件夹中新建dat

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值