算法:递归解序列中最长递减子序列

本文介绍了如何使用递归编程解决序列中最长递减子序列问题。关键在于正确地抽象问题并设定终止条件。通过示例代码展示了递归函数的实现,该函数接收当前值、起始位置和最小值指针作为参数,当达到序列末尾时返回最长递减子序列的长度和最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

递归编程很简洁,关键是:
1)做好抽象,要把问题分解为递归的问题
2)找到准确的程序终止条件

下面是求最长递减序列的递归算法:如果不在递归中传送参数,问题还是不好解决的,参数的意义就是,返回子最长序列的最小的顶元素


#include <iostream>
using namespace std;

#define MAX_COUNT 7
int a[] = { 5,10,1,6,8,7,4 };

int F(int value,int start, int *min) { // 返回值: ( value, a[start], a[start+1],...,a[MAX_COUNT-1] ) 中最长递减序列的长度,其中 min 为返回序列的第一个元素(是序列的最大值,但是可选择元素中的最小值)

int F(int value,int start, int *min) {
    if ( start == MAX_COUNT ) {  // 递归结束条件
        *min = value;
        cout << *min << ",";
        return 1;
    }

    int pas;
    int a1 = F( a[start],start+1,&pas); // 去掉 value 序列的递归调用

    // 考虑加入当前元素后的情况
    if (value > pas) { 
        a1+=1;
        *min = value;
        cout << *min << ",";
    }
    else {
        *min = pas;
    }

    return a1;
}

int main() {
    cout << "!!!LongestDecent!!!" << endl;
    int min;
    int longestDecent = F(a[0],1, &min);
    cout << endl;
    cout << "LongestDecent: " << longestDecent << " min:" << min << endl;

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值