大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统 微博预警系统 微博数据分析可视化大屏 微博爬虫 微博预测系统 机器学习 深度学习 人工智能 计算机毕业设计

本文探讨了在互联网快速发展的背景下,如何利用深度学习技术改进传统的微博数据分析方法,以提取有价值的信息和趋势预测。研究涉及从数据采集、清洗、到利用Hive和Spark进行离线和实时分析,以及使用深度学习算法进行个性化推荐和流量预测。项目还涵盖了数据可视化和前后端系统的开发,旨在为企业和学术研究提供新的工具和洞察力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

研究背景

随着互联网的快速发展,社交媒体平台如微博等逐渐成为人们表达观点、分享信息、交流互动的主要渠道。每天有大量的用户生成内容(UGC)被发布到微博上,这其中蕴含了丰富的信息和社会动态。如何有效地对这些数据进行处理和分析,提取出有价值的信息和趋势预测,成为了一个重要的问题。

传统的微博数据分析方法往往基于人工统计和简单的文本分析,难以处理大规模、复杂的数据,也无法实现精准的趋势预测。近年来,深度学习技术在自然语言处理(NLP)、图像识别、语音识别等领域取得了显著的成果,为处理微博这种富含文本信息的数据提供了新的解决方案。

意义 

  • 理论意义:本研究将深化对社交媒体数据特性的理解,丰富和发展数据挖掘和文本分析的理论和方法。同时,通过深度学习技术对微博数据的处理和分析,可以进一步挖掘用户行为模式、观点倾向、话题热点等,为社交媒体研究提供新的视角和工具。
  • 实践意义:对于企业和政府机构来说,通过本系统的分析和预测,可以更好地了解公众的意见和态度,及时发现和引导舆情,优化产品和服务。同时,对于学术研究来说,本系统可以提供大量的实证数据和分析结果,推动社会科学和信息科学的发展。

二、论文(设计)的主要内容 

(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;

(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;

(三)使用hive数仓技术建表建库,导入.csv数据集;

(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;

(五)统计指标使用sqoop导入mysql数据库;

(六)使用Flask+echarts进行可视化大屏开发;

(七)使用机器学习、深度学习的算法进行个性化微博推荐;

(八)使用卷积神经网络KNN、CNN实现热搜话题流量预测;

(九)搭建springboot+vue.js前后端分离web系统进行个性化推荐界面、话题流量预测界面、知识图谱等实现;

三、论文(设计)进度安排 

  1. 2023.09.01—2023.09.28: 收集检索微博数据分析、预测算法相关知识和资料,进行需求分析、学习研究技能;
  2. 2023.10.07—2023.10.31:完成开题报告,进行开题答辩;
  3. 2024.11.01—2024.02.09:分析系统应完成的功能,完成概要设计;
  4. 2024.02.19—2024.03.20:初步完成系统分析与设计;系统开发,测试。
  5. 2024.03.21—2024.04.15:资料整合、论文定稿,准备迎接学术不端检测,
  6. 2024.04.16—2024.04.30:撰写 PPT,准备参加答辩;

7、2024.05.01—2024.05.10:完成毕业答辩,提交所有毕业论文的数据源、图表、论文;

核心代码分享如下,可用于构建图谱:

# -*- codeing = utf-8 -*-
# 创建图谱专用的json文件
#
import numpy as np
import pandas as pd
import json
from db import db_util

d = db_util()
db, cursor = d.get_conn()

def build():
    s_dict = {}
    t_dict = {}
    ret = []

    ind1 = 10000
    ind2 = 20000
    ind3 = 30000
    rind = 900000

    sql = 'select  *  from  tb_article'
    df = pd.read_sql(sql, con=db)
    for index, row in df.iterrows():

        comment = row['comment']
        username = row['username']

        if comment not in s_dict:
            ind2 = ind2 + 1
            s_dict[comment] = ind2
            index2 = ind2
        else:
            index2 = s_dict[comment]

        if username not in t_dict:
            ind3 = ind3 + 1
            t_dict[username] = ind3
            index3 = ind3
        else:
            index3 = t_dict[username]

        properties = {"name": row['title'], 'shares': row['shares'],  'comments':row['comments']}
        start = {'identity': index, 'labels':['话题'], 'properties':properties}
        end = {'identity': index2, 'labels':['评论'], 'properties':{"name": comment}}
        relationship = {"identity": rind, "start": index,"end": index2,
                        "type": "type", "properties": {"name": "评论"}}
        rind = rind + 1
        segments = []
        segments.append(dict(start=start, relationship=relationship, end=end))

        end = {'identity': index3, 'labels': ['用户名'], 'properties': {"name": username}}
        relationship = {"identity": rind, "start": index, "end": index3,
                        "type": "type", "properties": {"name": "用户"}}
        rind = rind + 1
        segments.append(dict(start=start, relationship=relationship, end=end))

        p = dict(segments=segments, length=1.0)
        ret.append(dict(p=p, score=2))

    json_str = json.dumps(ret, ensure_ascii=False)
    with open('test.json', 'w', encoding='utf8') as f2:
        # ensure_ascii=False才能输入中文,否则是Unicode字符
        # indent=2 JSON数据的缩进,美观
        json.dump(ret, f2, ensure_ascii=False, indent=2)
    print(json_str)
    print("end..")

if __name__ == '__main__':
    build()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值