量子力学期末宝典

量子力学期末宝典

1 模型

1.1 一维无限深势阱

H ^ = − 1 2 m d 2 d x 2 + V ( x ) V ( x ) = { 0 , 0 < x < a ∞ , x ∉ ( 0 , a ) \hat{H}=-\frac{1}{2m}\frac{\rm{d^2}}{{\rm{d}}x^2}+V(x) \\V(x)=\left\{ \begin{array}{rcl} 0&& {,0<x<a}\\ \infin&& {,x\notin(0,a)} \end{array} \right. H^=2m1dx2d2+V(x)V(x)={0,0<x<a,x/(0,a)

ψ n ( x ) = 2 a s i n ( n π a x ) , 0 ≤ x ≤ a \psi_n(x)=\sqrt{\frac{2}{a}}{\rm{sin}}\left(\frac{n{\pi}}{a}x\right) , 0\leq{x}\le{a} ψn(x)=a2 sin(anπx),0xa

E n = n 2 π 2 ℏ 2 2 m a 2 , n = 1 , 2 , ⋯ E_n=\frac{n^2{\pi}^2{\hbar}^2}{2ma^2} , n=1,2,\cdots En=2ma2n2π22,n=1,2,

  • 基态 ( n = 1 n=1 n=1) 能量不为零

1.2 一维线性谐振子

H ^ = − p 2 2 m + 1 2 m ω 2 x 2 ψ n ( x ) = N n H n ( α x ) e − α 2 x 2 / 2 , α = m ω ℏ E n = ( n + 1 2 ) ℏ ω \hat{H}=-\frac{p^2}{2m}+\frac{1}{2}m{\omega}^2x^2\\ \psi_n(x)=N_nH_n(\alpha{x})e^{-{\alpha}^2x^2/2},\alpha=\sqrt{\frac{m\omega}{\hbar}}\\ E_n=(n+\frac{1}{2}){\hbar}{\omega} H^=2mp2+21mω2x2ψn(x)=NnHn(αx)eα2x2/2α= En=(n+21)ω

  • 注意基态零点能
  • 一维谐振子具有宇称 P = ( − 1 ) n \mathcal{P}=(-1)^n P=(1)n ,波函数与 n n n 同奇偶

1.3 类氢原子

H ^ = 1 r 2 ∂ ∂ r r 2 ∂ ∂ r − L 2 r 2 ℏ 2 \hat{H}=\frac{1}{r^2}\frac{\partial}{\partial{r}}r^2\frac{\partial}{\partial{r}}-\frac{L^2}{r^2{\hbar}^2} H^=r21rr2rr22L2

ψ n l m ( r ⃗ ) = R n l ( r ) Y l m ( θ , φ ) \psi_{nlm}(\vec{r})=R_{nl}(r)Y_{lm}(\theta,\varphi) ψnlm(r )=Rnl(r)Ylm(θ,φ)

E n = − Z 2 e s 2 2 a 2 n 2 = − Z 2 μ e s 4 2 ℏ 2 n 2 , n = 1 , 2 , ⋯ E_n=-\frac{Z^2e_s^2}{2a^2n^2}=-\frac{Z^2{\mu}e_s^4}{2{\hbar}^2n^2} , n=1,2,\cdots En=2a2n2Z2es2=22n2Z2μes4,n=1,2,

  • 空间部分波函数,第 n n n 能级简并度为 ∑ l = 0 n − 1 ( 2 l + 1 ) = n 2 \sum_{l=0}^{n-1}(2l+1)=n^2 l=0n1(2l+1)=n2 ,若考虑自旋部分还需 ×2

( 1 ) H ^ ψ n l m = E n ψ n l m , n = 1 , 2 , ⋯ (1)\quad \hat{H}\psi_{nlm}=E_n\psi_{nlm} , n=1,2,\cdots (1)H^ψnlm=Enψnlm,n=1,2,

( 2 ) L ^ 2 Y l m = l ( l + 1 ) ℏ 2 Y l m , l = 0 , 1 , ⋯   , n − 1 Y l m = N l m P l m ( c o s θ ) e i m φ (2)\quad \hat{L}^2Y_{lm}=l(l+1){\hbar}^2Y_{lm} , l=0,1,\cdots,n-1 \\ Y_{lm}=N_{lm}P_l^m({\rm{cos}\theta})e^{im\varphi} (2)L^2Ylm=l(l+1)2Ylm,l=0,1,,n1Ylm=NlmPlm(cosθ)eimφ

( 3 ) L ^ z Φ m = m ℏ Φ m , m = 0 , ± 1 , ± 2 , ⋯   , ± l Φ m = 1 2 π e i m φ (3)\quad \hat{L}_z\Phi_m=m\hbar\Phi_m , m=0,\pm1,\pm2,\cdots,\pm{l} \\ \Phi_m=\frac{1}{\sqrt{2\pi}}e^{im\varphi} (3)L^zΦm=mΦm,m=0,±1,±2,,±lΦm=2π 1eimφ

1.4 自由粒子 — 连续谱

p ⃗ ^ ψ p ⃗ ( r ⃗ ) = p ⃗ ψ p ⃗ ( r ⃗ ) p ⃗ ^ = − i ℏ ∇   ( 坐标表象 ) \hat{\vec{p}}\psi_{\vec{p}}(\vec{r})=\vec{p}\psi_{\vec{p}}(\vec{r}) \\ \hat{\vec{p}}=-i{\hbar}{\nabla}\ (\text{坐标表象}) p ^ψp (r )=p ψp (r )p ^=i (坐标表象)

ψ p ⃗ ( r ⃗ ) = 1 ( 2 π ℏ ) 3 / 2 e i ℏ p ⃗ ⋅ r ⃗ \psi_{\vec{p}}(\vec{r})=\frac{1}{(2{\pi}{\hbar})^{3/2}}e^{\frac{i}{\hbar}\vec{p}\cdot\vec{r}} ψp (r )=(2π)3/21eip r

  • 动量本征函数 ψ p ⃗ ( r ⃗ ) \psi_{\vec{p}}(\vec{r}) ψp (r ) D i r a c   δ Dirac \ \delta Dirac δ 函数的意义下正交归一,可采取箱归一化的方法将其从有限空间内的离散谱过渡到无限空间内的连续谱

2 选择填空题

2.1 算符

2.1.1 厄米算符 — 对应力学量

定义

F † = F ⇔ ⟨ ϕ ∣ F ∣ ψ ⟩ = ⟨ ϕ ∣ F ψ ⟩ = ⟨ F † ϕ ∣ ψ ⟩ ⇔ ⟨ ∣ ϕ ∣ F ∣ ψ ⟩ = ⟨ ψ ∣ F ∣ ϕ ⟩ ∗ F^{\dagger}=F \Leftrightarrow \langle{\phi}|{F}|{\psi}\rangle=\langle{\phi}|{F\psi}\rangle=\langle{F^{\dagger}\phi}|{\psi} \rangle \Leftrightarrow \langle|{\phi}|{F}|{\psi}\rangle=\langle{\psi}|{F}|{\phi}\rangle^* F=FϕFψ=ϕFψ=FϕψϕFψ=ψFϕ

性质

  • 本征值都是实数

  • 属于不同本征值的本征函数正交

  • 厄米算符的本征函数构成完备集 { ψ i }    i = 1 , 2 , 3 , ⋯ \{\psi_i\} \ \ i=1,2,3,\cdots {ψi}  i=1,2,3,

  • 完备性关系 ∑ i ∣ ψ i ⟩ ⟨ ψ i ∣ = 1 \sum_{i}|{\psi_i}\rangle\langle{\psi_i}|=1 iψiψi=1

  • 平均值 ⟨ F ⟩ ∈ R \langle {F} \rangle\in\R FR

  • F F F 本征态 ψ i \psi_i ψi 上, ⟨ [ F , G ] ⟩ = 0 \left \langle [F,G] \right \rangle=0 [F,G]=0 ,其中 G G G 是任意一个厄米算符

力学量对应的算符

坐标算符: r ⃗ ^ = r ⃗ \hat{\vec{r}}=\vec{r} r ^=r (坐标表象)

动量算符: p ⃗ ^ = − i ℏ ∇ \hat{\vec{p}}=-i{\hbar}\nabla p ^=i (坐标表象)

角动量算符: L ⃗ = r ⃗ × p ⃗ {\vec{L}}=\vec{r}{\times}\vec{p} L =r ×p

  • 球坐标系下
    L ^ 2 = − ℏ 2 ( 1 s i n θ ∂ ∂ θ s i n θ ∂ ∂ θ + 1 s i n 2 θ ∂ 2 ∂ φ 2 ) \hat{{L}}^2=-{\hbar}^2\left(\frac{1}{{\rm{sin}}\theta}\frac{\partial}{\partial{\theta}}{\rm{sin}}\theta\frac{\partial}{\partial{\theta}}+\frac{1}{{\rm{sin}}^2\theta}\frac{\partial^2}{\partial{\varphi^2}} \right) L^2=2(sinθ1θsinθθ+sin2θ1φ22)
  • L z L_z Lz 表象下
    L x = ℏ 2 [ 0 1 0 1 0 1 0 1 0 ] , L y = ℏ 2 [ 0 − i 0 i 0 − i 0 i 0 ] , L z = ℏ [ 1 0 0 0 0 0 0 0 − 1 ] L_x={\frac{\hbar}{\sqrt{2}}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ \end{bmatrix} , L_y={\frac{\hbar}{\sqrt{2}}} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \\ \end{bmatrix} , L_z={\hbar} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ \end{bmatrix} Lx=2 010101010 ,Ly=2 0i0i0i0i0 ,Lz= 100000001

哈密顿算符: H = p 2 2 m + V H=\frac{p^2}{2m}+V H=2mp2+V

自旋角动量算符: S ⃗ = ℏ 2 σ ⃗ \vec{S}=\frac{\hbar}{2}\vec{\sigma} S =2σ σ ⃗ \vec{\sigma} σ 是泡利算符

  • σ z \sigma_z σz 表象下
    σ x = [ 0 1 1 0 ] , σ y = [ 0 − i i 0 ] , σ z = [ 1 0 0 − 1 ] , \sigma_x=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} , \sigma_y=\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} , \sigma_z=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} , σx=[0110],σy=[0ii0],σz=[1001],
  • 泡利算符这三个分量的矩阵形式加上单位矩阵构成二维矩阵的完备基
2.1.2 幺正算符 — 表象变换

定义
S † S = S S † = 1 S^{\dagger}S=SS^{\dagger}=1 SS=SS=1

  • 幺正算符不一定是厄米算符

  • 幺正变换下本征值、内积、期望、行列式、迹不变,这意味着不同描述方式(表象)并不会改变物理量的观测结果

2.1.3. 对易子

定义

[ F , G ] = F G − G F [F,G]=FG-GF [F,G]=FGGF

基本对易关系

[ x i , p j ] = i ℏ δ i j ,   [ L i , L j ] = i ℏ ϵ i j k L k ,   [ L 2 , L i ] = 0 ,   [ σ i , s i g m a j ] = i ϵ i j k σ k [x_i,p_j]=i\hbar\delta_{ij},\ [L_i,L_j]=i{\hbar}\epsilon_{ijk}L_k,\ [L^2,L_i]=0,\ [\sigma_i,sigma_j]=i\epsilon_{ijk}\sigma_k [xi,pj]=iδij, [Li,Lj]=iϵijkLk, [L2,Li]=0, [σi,sigmaj]=iϵijkσk

  • [ L ^ z , F ( r ) ] = [ − i ℏ ∂ ∂ φ , F ( r ) ] = 0 [\hat{L}_z,F(r)]=[-i{\hbar}\frac{\partial}{\partial\varphi},F(r)]=0 [L^z,F(r)]=[iφ,F(r)]=0

  • [ L ^ z , F ( r ⃗ ) ] Ψ = − i ℏ ∂ ∂ φ ( F ( r ⃗ ) Ψ ) − F ( r ⃗ ) ( − i ℏ ∂ ∂ φ Ψ ) = − i ℏ ∂ F ( r ⃗ ) ∂ φ ⋅ Ψ [\hat{L}_z,F(\vec{r})]\Psi=-i{\hbar}\frac{\partial}{\partial\varphi} \left(F(\vec{r})\Psi \right)-F(\vec{r})\left(-i{\hbar}\frac{\partial}{\partial\varphi}\Psi \right)=-i{\hbar}\frac{\partial{F(\vec{r})}}{\partial\varphi}{\cdot}\Psi [L^z,F(r )]Ψ=iφ(F(r )Ψ)F(r )(iφΨ)=iφF(r )Ψ

  • [ r ⃗ ⋅ p ⃗ , F ( r ⃗ ) ] = r ⃗ ⋅ [ − i ℏ ∇ , F ( r ⃗ ) ] = − i ℏ r ⃗ ⋅ ∇ F ( r ⃗ ) [\vec{r}{\cdot}\vec{p},F(\vec{r})]=\vec{r}{\cdot}[-i{\hbar}\nabla,F(\vec{r})]=-i{\hbar}\vec{r}{\cdot}{\nabla}F(\vec{r}) [r p ,F(r )]=r [i,F(r )]=ir F(r )

2.1.4. 不确定性关系

两算符对易则可以同时取确定值,不对易时,设 [ F , G ] = i K [F,G]=iK [F,G]=iK ,两者对应的物理量不能同时取确定值,且有不确定性关系
⟨ ( Δ F ) 2 ⟩ ⟨ ( Δ G ) 2 ⟩ ≥ 1 4 ⟨ K ⟩ 2 Δ F ‾   Δ G ‾ ≥ 1 2 ∣ ⟨ K ⟩ ∣ \left \langle ({\Delta}F)^2 \right \rangle\left \langle ({\Delta}G)^2 \right \rangle \ge \frac{1}{4} \langle K \rangle ^2\\ \overline{\Delta{F}}\ \overline{\Delta{G}} \ge \frac{1}{2} |\langle K \rangle| (ΔF)2(ΔG)241K2ΔF ΔG21K

均方偏差算符 ( Δ F ) 2 = ( F − ⟨ F ⟩ ) 2 ⇒ ⟨ ( Δ F ) 2 ⟩ = ⟨ F 2 ⟩ − ⟨ F ⟩ 2 ({\Delta}F)^2=(F-\langle{F}\rangle)^2 \quad \Rightarrow \quad \langle{({\Delta{F}})^2}\rangle=\langle{F^2}\rangle-\langle{F}\rangle^2 (ΔF)2=(FF)2(ΔF)2=F2F2

2.1.5 力学量完全集:为确定体系状态所需的一组相互对易的数量最少的算符集合
  • 完全集中算符数目=体系自由度=一组好的量子数个数

  • 力学量完全集中的力学量可以同时取确定值(或称”可同时测准“)

  • 一组好的量子数对应的力学量是体系的守恒量,即它们都与H对易,如 { H , L 2 , L z , S z } \{H,L^2,L_z,S_z\} {H,L2,Lz,Sz} 对应一组好的量子数 { n , l , m l , m s } \{n,l,m_l,m_s\} {n,l,ml,ms} ,这四个量子数唯一确定体系的状态 (波函数) . 泡利不相容原理:体系中电子(费米子)不可能具有上面四个完全相同的量子数.

2.1.6 力学量取确定值V. S体系状态确定
  • 算符对应的力学量取确定值 <=> 体系处在该算符的本征态,对力学量进行测量将得到该本征态对应的本征值

  • 体系状态确定 <=> 描述体系的波函数给定,与其是否随时间变化和力学量是否取确定值or守恒无关

2.1.7 对称性与守恒量

d d t ⟨ F ⟩ = ⟨ ∂ F ∂ t ⟩ + 1 i ℏ ⟨ [ F , H ] ⟩ \frac{{\rm{d}}}{{\rm{d}}t}\left\langle{F}\right\rangle=\left\langle{\frac{\partial{F}}{\partial{t}}}\right\rangle+\frac{1}{i{\hbar}}\left\langle{[F,H]}\right\rangle dtdF=tF+i1[F,H]

守恒量:平均值不随时间变化的力学量

  • 守恒量的算符本征值的加权平均,由于可以处在本征态的线性叠加,力学量可以有多个本征值 (取值) ,但取到各本征值的概率不随时间变化

  • 守恒量不一定取确定值,取确定值 = 只取一个本征值

  • 守恒量对应的算符 (不显含时间) 与体系 H H H 对易,从而相互对易,它们有共同本征态,因此在共同本征态上可以同时取确定值

  • 一组完备的守恒量对应一组好量子数,数量=自由度

  • 定态:哈密顿量 H H H 的本征态 ψ ( r ⃗ , t ) = ψ ( r ⃗ ) e i E t ℏ \psi({\vec{r}},t)=\psi(\vec{r})e^{\frac{iEt}{\hbar}} ψ(r ,t)=ψ(r )eiEt

  • 定态能量取确定值,即哈密顿算符本征值。所有力学量的平均值、取值概率不随时间改变,因为对于任意厄米算符 F F F ,当体系在 H H H 本征态 ψ n \psi_n ψn ⟨ [ F , H ] ⟩ = ⟨ ψ n F H ∣ ψ n ⟩ − ⟨ ψ n H F ∣ ψ n ⟩ = E n ⟨ ψ n H ∣ ψ n ⟩ − E n ∗ ⟨ ψ n F ∣ ψ n ⟩ = 0 \left\langle{[F,H]}\right\rangle= \langle{\psi_n}{FH}|{\psi_n}\rangle-\langle{\psi_n}{HF}|{\psi_n}\rangle=E_n\langle{\psi_n}{H}|{\psi_n}\rangle-E_n^*\langle{\psi_n}{F}|{\psi_n}\rangle=0 [F,H]=ψnFHψnψnHFψn=EnψnHψnEnψnFψn=0

  • 粒子概率密度、概率流密度稳定不随时间改变

  • 定态的叠加不一定是定态,除非相同能量本征值对应的几个简并态叠加后能量仍然取该本征值

对称性 — 体系力学量的守恒与某种抽象对称性联系

  • 空间平移对称性 ⟷ \longleftrightarrow 动量守恒

  • 空间旋转对称性 ⟷ \longleftrightarrow 角动量守恒

  • 时间平移对称性 ⟷ \longleftrightarrow 能量守恒

  • 空间反演对称性 ⟷ \longleftrightarrow 宇称守恒

  • 宇称:描述体系在空间反演变换下性质的力学量,本征值为 ± 1 \pm1 ±1 ,无经典对应。把波函数在空间反演下不变和变号分别称为奇宇称和偶宇称

2.2 实际问题

2.2.1. 一维定态

d 2 d x 2 ψ ( x ) + k 2 ψ ( x ) = 0 , k 2 = 2 m ℏ 2 [ E − V ] \frac{{\rm{d^2}}}{{\rm{d}}x^2}\psi(x)+k^2\psi(x)=0 , k^2=\frac{2m}{{\hbar}^2}[E-V] dx2d2ψ(x)+k2ψ(x)=0,k2=22m[EV]

  • 一维定态最多二度简并,两独立解满足 ϕ 1 ϕ 2 ′ − ϕ 1 ′ ϕ 2 = C o n s t \phi_1\phi_2'-\phi_1'\phi_2=Const ϕ1ϕ2ϕ1ϕ2=Const

  • 求解方法:分区求解定态方程 ⟶ \longrightarrow 代入衔接条件+边界条件定系数

根据具体问题选择两套基函数

(1) k > 0 :   s i n k x , c o s k x k>0:\ {\rm{sin}}kx,{\rm{cos}}kx k>0: sinkx,coskx束缚态 (驻波边界) ,势函数有奇偶性

(2) k < 0 :   e i k x , e − i k x k<0:\ e^{ikx},e^{-ikx} k<0: eikx,eikx散射态 (平面波) ,如势垒贯穿中

衔接条件:波函数及一阶导数连续 (适用于势函数非无穷跳跃)

2.2.2. 一维束缚定态

【束缚态:无穷远处概率密度为 0 ;散射态:可逃逸至无穷远处】

  • 束缚态波函数可归一化

  • 波函数可选为实函数

  • 势函数对称则体系宇称确定 (波函数有奇偶性)

  • 概率流密度为 0

  • 能级非简并 ϕ 1 ϕ 2 ′ − ϕ 1 ′ ϕ 2 = 0 ( x → ∞ ) ⇒ ϕ 1 = ϕ 2 \phi_1\phi_2'-\phi_1'\phi_2=0 \quad (x\rightarrow {\infin}) \quad \Rightarrow \quad \phi_1=\phi_2 ϕ1ϕ2ϕ1ϕ2=0(x)ϕ1=ϕ2

  • 本征函数集正交完备

2.2.3. 表象:选定一组基将态和力学量进行表示 ∣ ψ ⟩ = ∑ c n ∣ a n ⟩ |{\psi}\rangle=\sum{c_n |{a_n}\rangle} ψ=cnan

矩阵表示即把态矢在这组基下的坐标 c n = ⟨ a n ∣ ψ ⟩ c_n=\langle{a_n}|{\psi}\rangle cn=anψ 排成列矢量,算符的矩阵元 F m n = ⟨ a m F ∣ a n ⟩ F_{mn}=\langle{a_m}{F}|{a_n}\rangle Fmn=amFan 排成矩阵

∣ a n ⟩ |{a_n}\rangle an 为算符 A A A 的本征矢,此时将上面这种表示方法称为 A A A 表象,或态和算符在 A A A 表象下的矩阵表示,若要变换到 B B B 表象,利用变换矩阵
{ F ( B ) = S † F ( A ) S ψ ( B ) = S † ψ ( A ) S m n = ⟨ a m ∣ b n ⟩ \left\{\begin{array}{l} F^{(B)}=S^{\dagger} F^{(A)} S \\ \psi^{(B)}=S^{\dagger} \psi^{(A)} \end{array} \quad S_{m n}=\left\langle a_{m}\mid b_{n}\right\rangle\right. {F(B)=SF(A)Sψ(B)=Sψ(A)Smn=ambn

2.2.4.位力定理 (定态):

2 ⟨ T ⟩ = ⟨ r ⃗ ⋅ ∇ V ⟩ = n ⟨ V ⟩ 2\langle{T}\rangle=\langle{{\vec{r}}\cdot{\nabla}V}\rangle=n\langle{V}\rangle 2T=r V=nV

(第二个等号成立条件: V V V是坐标的 n n n次齐次函数)

  • 氢原子: n = − 1 ⟨ T ⟩ = − ⟨ V ⟩ / 2 E n = ⟨ V ⟩ / 2 n=-1 \quad \langle{T}\rangle=-\langle{V}\rangle/2 \quad E_n=\langle{V}\rangle/2 n=1T=V/2En=V/2

  • 线性谐振子: n = 2 ⟨ T ⟩ = ⟨ V ⟩ = ⟨ H ⟩ / 2 n=2 \quad \langle{T}\rangle=\langle{V}\rangle=\langle{H}\rangle/2 n=2T=V=H/2

2.2.5.Hellmann-Feynmann 定理

设束缚定态能量 E n E_n En ,归一化波函数为 ψ n \psi_n ψn λ \lambda λ 为哈密顿算符任一参数,则有
∂ E n ∂ λ = ⟨ ∂ H ∂ λ ⟩ \frac{\partial{E_n}}{\partial{\lambda}}=\left\langle{\frac{\partial{H}}{\partial{\lambda}}}\right\rangle λEn=λH

2.2.6 纯量子效应
  • 电子自旋以及自旋相关效应

  • 全同粒子的不可分辨性

  • 全同粒子的交换能

  • 谐振子零点能

  • 全同粒子体系哈密顿量的交换不变性不属于纯量子效应

2.2.7 全同粒子组合排列问题

m个单粒子态 (能级) ,n个粒子,问体系可能的状态数or波函数个数

  • 费米子:不重复组合 — 全同 (泡利不相容原理) C m n , ( m ≥ n ) C_m^n , (m{\ge}n) Cmn,(mn)

  • 玻色子:重复组合 — 占据数无限制 C n + m − 1 m − 1 = C n + m − 1 n C_{n+m-1}^{m-1}=C_{n+m-1}^n Cn+m1m1=Cn+m1n

  • n n n 维线性谐振子的第 m m m 能级简并度也是如此计算
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值