固体物理学习笔记

本文深入探讨固体物理中的倒易点阵,包括正点阵的数学描述、傅里叶变换引入的倒易点阵、其周期性与对称性,重点阐述了布里渊区的概念及其在晶体物理性质研究中的重要性。
摘要由CSDN通过智能技术生成

§ 3 倒易点阵及其周期性

本章首先介绍从原子平衡位置为基础的正格子空间到与之对应的倒格子空间的变换——傅里叶变换,然后介绍倒易点阵和正点阵之间的关系以及倒易点阵的周期性描述,最后介绍在固体物理学中十分重要的概念——布里渊区。



1 正点阵及其数学描述

​ 如果把原子平衡位置对应的几何点看成是格点,则这些格点在坐标空间中的周期性排布形成布喇菲点阵。

数学描述

  • 正点阵

W ( r ⃗ ) = ∑ l δ ( r ⃗ − R ⃗ l ) W(\vec{r})=\sum_l {\delta}(\vec{r}-\vec{R}_l) W(r )=lδ(r R l)

  • 平移对称性

W ( r ⃗ ) = W ( r ⃗ + R ⃗ l ) (1) W(\vec{r})=W(\vec{r}+\vec{R}_l) \tag {1} W(r )=W(r +R l)(1)



2 倒易点阵

( x , y , z ) → F o u r i e r   T r a n s f o r m a t i o n ( k x , k y , k z ) { a ⃗ 1 , a ⃗ 2 , b ⃗ 3 } → 基 矢 傅 里 叶 变 换 变 换 { b ⃗ 1 , b ⃗ 2 , b ⃗ 3 } (x,y,z) \xrightarrow{Fourier\ Transformation}(k_x,k_y,k_z) \\ \{ \vec{a}_1,\vec{a}_2,\vec{b}_3 \} \xrightarrow{\textstyle{基矢傅里叶变换变换}} \{\vec{b}_1,\vec{b}_2,\vec{b}_3\} (x,y,z)Fourier Transformation (kx,ky,kz){ a 1,a 2,b 3} { b 1,b 2,b 3}

基矢正交归一关系


a ⃗ i a i ⋅ b ⃗ i b i = δ i j (2) \frac{\vec{a}_i}{a_i}\cdot\frac{\vec{b}_i}{b_i}={\delta}_{ij} \tag 2 aia ibib i=δij(2)

{   b ⃗ 1 = c a ⃗ 2 × a ⃗ 3 b ⃗ 2 = c a ⃗ 3 × a ⃗ 1 b ⃗ 3 = c a ⃗ 1 × a ⃗ 2   ,   o r b ⃗ k = c 2 ε i j k a ⃗ i × a ⃗ j \left\{ \begin{aligned} \ &\vec{b}_1=c\vec{a}_2 \times \vec{a}_3 \\ &\vec{b}_2=c\vec{a}_3 \times \vec{a}_1 \\ &\vec{b}_3=c\vec{a}_1 \times \vec{a}_2 \end{aligned} \right.\ ,\ or \quad \vec{b}_k=\frac{c}{2}{\varepsilon}_{ijk}\vec{a}_i \times \vec{a}_j  b 1=ca 2×a 3b 2=ca 3×a 1b 3=ca 1×a 2 , orb k=2cεijka i×a j

∵ a ⃗ k ⋅ b ⃗ k = c 2 ε i j k a ⃗ k ⋅ ( a ⃗ i × a ⃗ j ) = c Ω = 1 , i n   w h i c h   Ω = ∣ a ⃗ k ⋅ ( a ⃗ i × a ⃗ j ) ∣ ∴ c = a 1 b 1 / Ω \begin{aligned} \because \quad &\vec{a}_k \cdot \vec{b}_k=\frac{c}{2}{\varepsilon}_{ijk}\vec{a}_k \cdot (\vec{a}_i \times \vec{a}_j) =c \Omega=1,\\ &in\ which\ \Omega=\left|\vec{a}_k \cdot (\vec{a}_i \times \vec{a}_j)\right| \\ \therefore \quad &c=a_1b_1/\Omega \end{aligned} a kb k=2cεijka k(a i×a j)=cΩ=1,in which Ω=a k(a i×a j)c=a1b1/Ω

Ω \Omega Ω​ 是正格子空间原胞体积,习惯把两个共轭量表为
A = ( 2 π ) d A ∗ A=\frac{(2\pi)^d}{A^*} A=A(2π)d
同时我们有
a k b k = 2 π ⇒ c = 2 π / Ω a_kb_k=2\pi \quad \Rightarrow \quad c=2\pi/\Omega akbk=2πc=2π/Ω

{   b ⃗ 1 = 2 π Ω a ⃗ 2 × a ⃗ 3 b ⃗ 2 = 2 π Ω a ⃗ 3 × a ⃗ 1 b ⃗ 3 = 2 π Ω a ⃗ 1 × a ⃗ 2 (3) \left\{ \begin{aligned} \ &\vec{b}_1=\frac{2\pi}{\Omega} \vec{a}_2 \times \vec{a}_3 \\ &\vec{b}_2=\frac{2\pi}{\Omega}\vec{a}_3 \times \vec{a}_1 \tag 3 \\ &\vec{b}_3=\frac{2\pi}{\Omega}\vec{a}_1 \times \vec{a}_2 \end{aligned} \right.  b 1=Ω2πa 2×a 3b

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值