如何利用大模型蒸馏出小模型实现降本

文章探讨了如何利用大模型如ChatGPT通过思维链(CoT)技术,通过模型蒸馏法训练小模型,使其在特定场景下超越大模型,同时显著减小模型大小。这种方法在保持推理能力的同时降低了成本,适用于多种场景,包括端侧部署。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


如何让小模型的推理效果在某些领域比 ChatGPT 这样的大模型还要更强?这篇论文提供了一个思路:https://arxiv.org/abs/2212.10071,借助思维链(CoT)逐步解决复杂推理任务的能力,可以使用大模型作为推理教师,针对一批数据集,让大模型给出详尽的解答思路,然后把问题和解题过程交给学生模型进行 Fine-tuning。 这个解决思路也有一个专有名词,叫做“模型蒸馏”,其效果还是非常亮眼的,在保持同样的推理能力,甚至超越大模型的情况下,模型的大小降低到原来的 1/500~1/25。这可以帮助很多特定场景降低成本,例如使用自建的蒸馏小模型替代直接调用 ChatGPT,很多简单场景都适用,如果蒸馏出来的模型足够小,还可以直接在端侧(移动设备或嵌入式系统)部署,在用户本地完成推理,进一步降低服务成本。

最近的研究表明,思维链(Chain-of-Thought,CoT)提示可以引导语言模型逐步解决复杂的推理任务。然而,基于提示的CoT方法依赖于如GPT-3 175B等非常庞大的模型,这在大规模部署上是不可行的。在本文中,我们利用这些大型模型作为推理教师,以实现较小模型的复杂推理并将模型大小要求降低数个数量级。我们提出了Fine-tune-CoT,一种从非常大的教师模型中生成推理样本以微调较小模型的方法。我们在各种公共模型和复杂任务上评估了我们的方法。我们发现Fine-tune-CoT使得较小模型具有显著的推理能力,远远超过基于提示的基线甚至在许多任务中超过教师模型。此外,我们通过利用教师模型生成每个原始样本的多个不同解释的能力来扩展我们的方法。用这样多样化的推理丰富微调数据&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值