学习日记2020-11-20论文学习

这篇博客探讨了深度学习在显著目标检测中的最新研究,包括轻量级模型CSNet、动态特征整合策略、渐进式特征精炼网络、F3Net融合反馈和焦点模块,以及利用标题进行语义增强的CapSal模型。这些方法通过结合不同层次的特征、反馈机制和全局上下文信息,提高了检测的效率和准确性。
摘要由CSDN通过智能技术生成

Highly Efficient Salient Object Detection with 100K Parameters

  1. a flexible convolutional module, namely gOctConv, to efficiently utilize both in-stage and cross-stages multi-scale features for SOD task, while reducing the representation redundancy by a novel dynamic weight decay scheme.
  2. we build an extremely light-weighted SOD model, namely CSNet–achieves comparable performance with ∼ 0.2% parameters
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

Dynamic Feature Integration for Simultaneous Detection of Salient Object, Edge and Skeleton

1.a dynamic feature integration strategy to explore the feature combinations automatically according to each input and task, and solve three contrasting tasks simultaneously in an end-to-end unified framework

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Progressive Feature Poli

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值