正态总体的样本均值与样本方差的分布定理

引理

  1. 设总体 X X X(不管服从什么分布,只要均值和方差存在)的均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自 X X X的一个样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和样本方差,则有 E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 / n , E ( S 2 ) = σ 2 E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n, \quad E(S^2)=\sigma^2 E(X)=μ,D(X)=σ2/n,E(S2)=σ2

  2. 正态分布线性可加性: 若 X i ∼ N ( μ i , σ i 2 ) , i = 1 , 2 , ⋯   , n X_i\sim N(\mu_i,\sigma_i^2),i=1,2,\cdots,n XiN(μi,σi2),i=1,2,,n,且他们相互独立,则他们的线性组合: C 1 X 1 + C 2 X 2 + ⋯ + C n X n C_1X_1+C_2X_2+\cdots+C_nX_n C1X1+C2X2++CnXn,( C 1 , C 2 , ⋯   , C n C_1,C_2,\cdots,C_n C1,C2,,Cn是不全为 0 0 0的常数)仍然服从正态分布,且有 C 1 X 1 + C 2 X 2 + ⋯ + C n X n ∼ N ( ∑ i = 1 n C i μ i , ∑ i = 1 n C i 2 σ i 2 ) C_1X_1+C_2X_2+\cdots+C_nX_n\sim N(\sum\limits_{i=1}^nC_i\mu_i,\sum\limits_{i=1}^nC_i^2\sigma_i^2) C1X1+C2X2++CnXnN(i=1nCiμi,i=1nCi2σi2)

  3. n n n维正态随机变量重要性质

    1 0 1^0\quad 10 n n n维正态随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)的每一个分量 X i , i = 1 , 2 , ⋯   , n X_i,i=1,2,\cdots,n Xi,i=1,2,,n都是正态随机变量,反之,若 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn都是正态随机变量,且相互独立,则 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn) n n n维正态随机变量

    2 0 2^0\quad 20 n n n维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)服从 n n n维正态分布的充要条件是 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的任意线性组合 l 1 X 1 + l 2 X 2 + ⋯ + l n X n l_1X_1+l_2X_2+\cdots+l_nX_n l1X1+l2X2++lnXn 服从一维正态分布(其中 l 1 , l 2 , ⋯   , l n l_1,l_2,\cdots,l_n l1,l2,,ln不全为零)

    3 0 3^0\quad 30 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)服从 n n n维正态分布,设 Y 1 , Y 2 , ⋯   , Y k Y_1,Y_2,\cdots,Y_k Y1,Y2,,Yk X j ( j = 1 , 2 , ⋯   , n ) X_j(j=1,2,\cdots,n) Xj(j=1,2,,n)的线性函数,则 ( Y 1 , Y 2 , ⋯   , Y k ) (Y_1,Y_2,\cdots,Y_k) (Y1,Y2,,Yk)也服从多维正态分布,这一性质称为正态变量的线性变换不变性

    4 0 4^0\quad 40 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,,Xn)服从 n n n维正态分布,则” X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立”与” X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn两两不相关“是等价的。

定理一

  • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ \overline{X} X是样本均值,则有 X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X}\sim N(\mu,\sigma^2/n). XN(μ,σ2/n).

    证明很简单,由引言1可知, E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 / n E(\overline{X})=\mu,\quad D(\overline{X})=\sigma^2/n E(X)=μ,D(X)=σ2/n

    X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\frac{1}{n}\sum\limits_{i=1}^nX_i X=n1i=1nXi X i X_i Xi 服从正态分布,则根据引理2可知, X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X}\sim N(\mu,\sigma^2/n). XN(μ,σ2/n).

定理二

  • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和样本方差,则有

    1 0 ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) 1^0\quad \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) 10σ2(n1)S2χ2(n1)

    2 0 X ‾ 2^0\quad \overline{X} 20X S 2 S^2 S2相互独立

    证明:

    ( n − 1 ) S 2 σ 2 = ( n − 1 ) σ 2 × 1 ( n − 1 ) ∑ i = 1 n ( X i − X ‾ ) 2 = ∑ i = 1 n ( X i − X ‾ ) 2 σ 2 = ∑ i = 1 n [ ( X i − μ ) − ( X ‾ − μ ) ] 2 σ 2 = ∑ i = 1 n ( X i − μ σ − X ‾ − μ σ ) 2 \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \frac{(n-1)}{\sigma^2}\times \frac{1}{(n-1)}\sum\limits_{i=1}^n(X_i-\overline{X})^2 \\&= \frac{\sum\limits_{i=1}^n(X_i-\overline{X})^2}{\sigma^2}\\&=\frac{\sum\limits_{i=1}^n[(X_i-\mu)-(\overline{X}-\mu)]^2}{\sigma^2}\\&= \sum\limits_{i=1}^n\bigg(\frac{X_i-\mu}{\sigma}-\frac{\overline{X}-\mu}{\sigma}\bigg)^2\end{aligned} σ2(n1)S2=σ2(n1)×(n1)1i=1n(XiX)2=σ2i=1n(XiX)2=σ2i=1n[(Xiμ)(Xμ)]2=i=1n(σXiμσXμ)2

    为了方便,我们令 Z i = X i − μ σ Z_i=\frac{X_i-\mu}{\sigma} Zi=σXiμ ,由于 X i ∼ N ( μ , σ 2 ) X_i\sim N(\mu,\sigma^2) XiN(μ,σ2) ,因此 Z i ∼ N ( 0 , 1 ) Z_i\sim N(0,1) ZiN(0,1)

    Z ‾ = X ‾ − μ σ \overline{Z} = \frac{\overline{X}-\mu}{\sigma} Z=σXμ ,则

    ( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( Z i − Z ‾ ) 2 = ∑ i = 1 n ( Z i 2 − 2 Z i Z ‾ + Z ‾ 2 ) = ∑ i = 1 n Z i 2 − 2 Z ‾ ∑ i = 1 n Z i + ∑ i = 1 n Z ‾ 2 = ∑ i = 1 n Z i 2 − 2 n Z ‾ 2 + n Z ‾ 2 = ∑ i = 1 n Z i 2 − n Z ‾ 2 \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &= \sum\limits_{i=1}^n(Z_i-\overline{Z})^2 \\&= \sum\limits_{i=1}^n(Z_i^2-2Z_i\overline{Z}+\overline{Z}^2) \\&= \sum\limits_{i=1}^nZ_i^2-2\overline{Z}\sum\limits_{i=1}^nZ_i+\sum\limits_{i=1}^n\overline{Z}^2 \\&= \sum\limits_{i=1}^nZ_i^2-2n\overline{Z}^2+n\overline{Z}^2\\&=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \end{aligned} σ2(n1)S2=i=1n(ZiZ)2=i=1n(Zi22ZiZ+Z2)=i=1nZi22Zi=1nZi+i=1nZ2=i=1nZi22nZ2+nZ2=i=1nZi2nZ2

    取一个 n n n阶正交矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),其第一行元素均为 1 / n 1/\sqrt{n} 1/n

    A = [ 1 / n 1 / n ⋯ 1 / n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] A = \begin{bmatrix}1/\sqrt{n} & 1/\sqrt{n} & \cdots & 1/\sqrt{n} \\ a_{21} & a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}\end{bmatrix} A=1/n a21an11/n a22an21/n a2nann

    A A A做正交变换 Y = A Z Y=AZ Y=AZ ,有

    Y = [ Y 1 Y 2 ⋮ Y n ] , Z = [ Z 1 Z 2 ⋮ Z n ] Y = \begin{bmatrix}Y_1 \\Y_2\\ \vdots \\Y_n \end{bmatrix},Z = \begin{bmatrix}Z_1 \\Z_2\\ \vdots \\Z_n \end{bmatrix} Y=Y1Y2Yn,Z=Z1Z2Zn

    由于 Y i = ∑ j = 1 n a i j Z j , i = 1 , 2 , ⋯   , n Y_i=\sum\limits_{j=1}^na_{ij}Z_j,\quad i=1,2,\cdots ,n Yi=j=1naijZj,i=1,2,,n ,因此 Y i Y_i Yi仍服从正态分布,由 Z i ∼ N ( 0 , 1 ) Z_i \sim N(0,1) ZiN(0,1) 可知

    E ( Y i ) = E ( ∑ j = 1 n a i j Z j ) = ∑ j = 1 n a i j E ( Z j ) = 0 E(Y_i) = E(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}E(Z_j) = 0 E(Yi)=E(j=1naijZj)=j=1naijE(Zj)=0

    D ( Y i ) = D ( ∑ j = 1 n a i j Z j ) = ∑ j = 1 n a i j 2 D ( Z j ) = ∑ j = 1 n a i j 2 = 1 D(Y_i) = D(\sum\limits_{j=1}^na_{ij}Z_j) = \sum\limits_{j=1}^na_{ij}^2D(Z_j) = \sum\limits_{j=1}^na_{ij}^2=1 D(Yi)=D(j=1naijZj)=j=1naij2D(Zj)=j=1naij2=1

    又由 C o v ( Z i , Z j ) = δ i j = { 0 , i ≠ j 1 , i = j , i , j = 1 , 2 , ⋯   , n Cov(Z_i,Z_j) = \delta_{ij}=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases} \quad ,i,j=1,2,\cdots,n Cov(Zi,Zj)=δij={0,i=j1,i=j,i,j=1,2,,n

    C o v ( Y i , Y k ) = C o v ( ∑ j = 1 n a i j Z j , ∑ l = 1 n a k l Z l ) = ∑ j = 1 n ∑ l = 1 n a i j a k l C o v ( Z j , Z l ) = ∑ j = 1 n a i j a k j = { 0 , i ≠ j 1 , i = j ( 正 交 矩 阵 性 质 , 各 行 均 是 单 位 向 量 且 两 两 正 交 ) \begin{aligned}Cov(Y_i,Y_k) &= Cov(\sum\limits_{j=1}^na_{ij}Z_j,\sum\limits_{l=1}^na_{kl}Z_l)\\&=\sum\limits_{j=1}^n\sum\limits_{l=1}^n a_{ij}a_{kl}Cov(Z_j,Z_l) \\&=\sum\limits_{j=1}^na_{ij}a_{kj} \\&=\begin{cases}0,\quad i\neq j \\1,\quad i=j\end{cases}(正交矩阵性质,各行均是单位向量且两两正交)\end{aligned} Cov(Yi,Yk)=Cov(j=1naijZj,l=1naklZl)=j=1nl=1naijaklCov(Zj,Zl)=j=1naijakj={0,i=j1,i=j()

    由此可知 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn 两两互不相关。又由于 n n n维随机变量 ( Y 1 , Y 2 , ⋯   , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn)是由 n n n维随机变量 ( X 1 , X 2 , ⋯   , X n ) (X_1,X_2,\cdots,X_n) (X1,X2,Xn)经线性变换得到,因此 ( Y 1 , Y 2 , ⋯   , Y n ) (Y_1,Y_2,\cdots,Y_n) (Y1,Y2,,Yn)也是 n n n维正态随机变量,由引理3性质4可知, Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn两两互不相关也即是 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn互相独立。前面已经计算出 E ( Y i ) = 0 , D ( Y i ) = 1 E(Y_i)=0,D(Y_i)=1 E(Yi)=0,D(Yi)=1 因此 Y i ∼ N ( 0 , 1 ) , i = 1 , 2 , ⋯   , n . Y_i\sim N(0,1),i=1,2,\cdots,n. YiN(0,1),i=1,2,,n.

    Y 1 = ∑ j = 1 n a 1 j Z j = ∑ j = 1 n 1 n Z j = 1 n ∗ n Z ‾ = n Z ‾ \begin{aligned}Y_1&=\sum\limits_{j=1}^na_{1j}Z_j \\&= \sum\limits_{j=1}^n\frac{1}{\sqrt{n}}Z_j\\&=\frac{1}{\sqrt{n}}*n\overline{Z}\\&=\sqrt{n}\overline{Z}\end{aligned} Y1=j=1na1jZj=j=1nn 1Zj=n 1nZ=n Z

    ∑ i = 1 n Y i 2 = Y T Y = ( A Z ) T ( A Z ) = Z T A T A Z = Z T Z = ∑ i = 1 n Z i 2 \begin{aligned}\sum\limits_{i=1}^nY_i^2&=Y^TY=(AZ)^T(AZ)\\&=Z^TA^TAZ = Z^TZ = \sum\limits_{i=1}^nZ_i^2\end{aligned} i=1nYi2=YTY=(AZ)T(AZ)=ZTATAZ=ZTZ=i=1nZi2

    此时有

    ( n − 1 ) S 2 σ 2 = ∑ i = 1 n Z i 2 − n Z ‾ 2 = ∑ i = 1 n Y i 2 − Y 1 2 = ∑ i = 2 n Y i 2 \begin{aligned} \frac{(n-1)S^2}{\sigma^2} &=\sum\limits_{i=1}^nZ_i^2-n\overline{Z}^2 \\&=\sum\limits_{i=1}^nY_i^2-Y_1^2\\&=\sum\limits_{i=2}^nY_i^2\end{aligned} σ2(n1)S2=i=1nZi2nZ2=i=1nYi2Y12=i=2nYi2

    由于 Y 2 , Y 3 , ⋯   , Y n Y_2,Y_3,\cdots,Y_n Y2,Y3,,Yn相互独立,且 Y i ∼ N ( 0 , 1 ) Y_i\sim N(0,1) YiN(0,1) ,因此 ( n − 1 ) S 2 σ 2 = ∑ i = 2 n Y i 2 ∼ χ 2 ( n − 1 ) . \frac{(n-1)S^2}{\sigma^2}=\sum\limits_{i=2}^nY_i^2\sim\chi^2(n-1). σ2(n1)S2=i=2nYi2χ2(n1).

    其次, X ‾ = σ Z ‾ + μ = σ Y 1 n + μ \overline{X} = \sigma\overline{Z}+\mu = \frac{\sigma Y_1}{\sqrt{n}}+\mu X=σZ+μ=n σY1+μ 仅跟 Y 1 Y_1 Y1有关,而 S 2 = σ 2 n − 1 ∑ i = 2 n Y i 2 S^2=\frac{\sigma^2}{n-1}\sum\limits_{i=2}^nY_i^2 S2=n1σ2i=2nYi2 仅依赖于 Y 2 , Y 3 , ⋯   , Y n Y_2,Y_3,\cdots,Y_n Y2,Y3,,Yn ,又因为 Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn相互独立,因此有 X ‾ \overline{X} X S 2 S^2 S2相互独立

定理三

  • X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ , S 2 \overline{X},S^2 X,S2 分别是样本均值和样本方差,则有 X ‾ − μ S / n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1) S/n Xμt(n1)

    证明:

    由定理一可知, X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X}\sim N(\mu,\sigma^2/n). XN(μ,σ2/n).

    进行标准化之后有 X ‾ − μ σ / n ∼ N ( 0 , 1 ) . \frac{\overline{X}-\mu}{\sigma /\sqrt{n}}\sim N(0,1). σ/n XμN(0,1).

    由定理二可知, ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1) σ2(n1)S2χ2(n1)

    根据 t t t分布定义有 X ‾ − μ σ / n ( n − 1 ) S 2 σ 2 ( n − 1 ) = X ‾ − μ S / n ∼ t ( n − 1 ) \begin{aligned} \frac{\frac{\overline{X}-\mu}{\sigma/ \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} = \frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t(n-1)\end{aligned} σ2(n1)(n1)S2 σ/n Xμ=S/n Xμt(n1)

    证明完毕

定理四

  • X 1 , X 2 , ⋯   , X n 1 X_1,X_2,\cdots,X_{n_1} X1,X2,,Xn1 Y 1 , Y 2 , ⋯   , Y n 1 Y_1,Y_2,\cdots,Y_{n_1} Y1,Y2,,Yn1是来自正态总体 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12) N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)的样本,且这两个样本 相互独立. 设 X ‾ = 1 n 1 ∑ i = 1 n 1 X i , Y ‾ = 1 n 2 ∑ i = 1 n 2 Y i \overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i,\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}Y_i X=n11i=1n1Xi,Y=n21i=1n2Yi 分别是这两个样本的样本均值; S 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ‾ ) 2 , S 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( Y i − Y ‾ ) 2 S_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2,S_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(Y_i-\overline{Y})^2 S12=n111i=1n1(XiX)2,S22=n211i=1n2(YiY)2分别是两个样本的样本方差,则有

    1 0 S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) 1^0\quad \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) 10σ12/σ22S12/S22F(n11,n21)

    2 0 2^0\quad 20 σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2时, ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) Swn11+n21 (XY)(μ1μ2)t(n1+n22)

    其中 S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 , S w = S w 2 S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}, S_w=\sqrt{S_w^2} Sw2=n1+n22(n11)S12+(n21)S22,Sw=Sw2

    证明:

    1 0 1^0 \quad 10 由定理二可知 ( n 1 − 1 ) S 1 2 σ 1 2 ∼ χ 2 ( n 1 − 1 ) ( 1 ) ( n 2 − 1 ) S 2 2 σ 2 2 ∼ χ 2 ( n 2 − 1 ) ( 2 ) \frac{(n_1-1)S_1^2}{\sigma_1^2}\sim \chi^2(n_1-1) \quad(1) \\\frac{(n_2-1)S_2^2}{\sigma_2^2}\sim \chi^2(n_2-1)\quad(2) σ12(n11)S12χ2(n11)(1)σ22(n21)S22χ2(n21)(2)

    此时有 ( n 1 − 1 ) S 1 2 ( n 1 − 1 ) σ 1 2 / ( n 2 − 1 ) S 2 2 ( n 2 − 1 ) σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2}\bigg/\frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1,n_2-1) (n11)σ12(n11)S12/(n21)σ22(n21)S22F(n11,n21)

    S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1) σ12/σ22S12/S22F(n11,n21)

    2 0 2^0\quad 20 由式 ( 1 ) (1) (1) ( 2 ) (2) (2),以及 χ 2 \chi^2 χ2分布的可加性可知 ( n 1 − 1 ) S 1 2 σ 1 2 + ( n 2 − 1 ) S 2 2 σ 2 2 服 从 χ 2 ( n 1 + n 2 − 2 ) \frac{(n_1-1)S_1^2}{\sigma_1^2}+\frac{(n_2-1)S_2^2}{\sigma_2^2} 服从\chi^2(n_1+n_2-2) σ12(n11)S12+σ22(n21)S22χ2(n1+n22)

    σ 1 2 = σ 2 2 = σ 2 \sigma_1^2=\sigma_2^2=\sigma^2 σ12=σ22=σ2可知, ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 σ 2 ∼ χ 2 ( n 1 + n 2 − 2 ) ( 3 ) \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)\quad (3) σ2(n11)S12+(n21)S22χ2(n1+n22)(3)

    由定理一可知 X ‾ ∼ N ( μ 1 , σ 2 / n ) , Y ‾ ∼ N ( μ 2 , σ 2 / n ) . \overline{X}\sim N(\mu_1,\sigma^2/n),\overline{Y}\sim N(\mu_2,\sigma^2/n). XN(μ1,σ2/n),YN(μ2,σ2/n).

    因此 X ‾ − Y ‾ ∼ N ( μ 1 − μ 2 , σ 2 / n 1 + σ 2 / n 2 ) \overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\sigma^2/n_1+\sigma^2/n_2) XYN(μ1μ2,σ2/n1+σ2/n2) ,对其进行标准化有

    ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 2 / n 1 + σ 2 / n 2 ∼ N ( 0 , 1 ) ( 4 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}} \sim N(0,1)\quad (4) σ2/n1+σ2/n2 (XY)(μ1μ2)N(0,1)(4)

    由式 ( 3 ) 、 ( 4 ) (3)、(4) (3)(4)可知 ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) σ 2 / n 1 + σ 2 / n 2 / ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 σ 2 ( n 1 + n 2 − 2 ) ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\sigma^2/n_1+\sigma^2/n_2}}\bigg/\sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2(n_1+n_2-2)}} \sim t(n_1+n_2-2) σ2/n1+σ2/n2 (XY)(μ1μ2)/σ2(n1+n22)(n11)S12+(n21)S22 t(n1+n22)

    ( X ‾ − Y ‾ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) \frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) Swn11+n21 (XY)(μ1μ2)t(n1+n22)

    证明完毕

  • 31
    点赞
  • 90
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
第1章 概率统计的基本知识 1.1 随机事件与概率 1.1.1随机事件 1.1.2 概率 1.1.3 古典概型 1.1.4 几何概型 1.1.5 条件概率 1.1.6 概率的乘法公式、全概率公式、Bayes公式 1.1.7 独立事件 1.1.8 n重Bemoulli试验及其概率计算 1.2 随机变量及其分布 1.2.1随机变量的定义 1.2.2 随机变量的分布函数 1.2.3 离散型随机变量 1.2.4 连续型随机变量 1.2.5 随机向量 1.3 随机变量的数字特征 1.3.1数学期望 1.3.2 方差 1.3.3 几种常用随机变量分布的期望与方差 1.3.4 协方差与相关系数 1.3.5 矩与协方差矩阵 1.4 极限定理 1.4.1大数定律 1.4.2 中心极限定理 1.5 数理统计的基本概念 1.5.1 总体、个体、简单随机样本 1.5.2 参数空间与分布族 1.5.3 统计量和抽样分布 1.5.4 正态总体样本均值样本方差分布 习题 第2章 R软件的使用 2.1 R软件简介 2.1.1 R软件的下载与安装 2.1.2 初识R软件 2.1.3 R软件主窗口命令与快捷方式 2.2 数字、字符与向量 2.2.1向量 2.2.2 产生有规律的序列 2.2.3 逻辑向量 2.2.4 缺失数据 2.2.5 字符型向量 2.2.6 复数向量 2.2.7 向量下标运算 2.3 对象和它的模式与属性 2.3.1 固有属性:mode和length 2.3.2 修改对象的长度 2.3.3 attributes()和attr()函数 2.3.4 对象的class属性 2.4 因子 2.4.1 factor()函数 2.4.2 tapply()数 2.4.3 gl()函数 2.5 多维数组和矩阵 2.5.1 生成数组或矩阵 2.5.2 数组下标 2.5.3 数组的四则运算 2.5.4 矩阵的运算 2.5.5与矩阵(数组)运算有关的函数 …… 第3章 数据描述性分析 第4章 参数估计 第5章 假设检验 第6章 回归分析 第7章 方差分析 第8章 应用多元分析(Ⅰ) 第9章 应用多元分析(Ⅱ) 第10章 计算机模拟 附录 索引 参考文献 ……
统计建模与R软件 统计建模与R软件 上下册 第1章 概率统计的基本知识 1.1 随机事件与概率 1.1.1随机事件 1.1.2 概率 1.1.3 古典概型 1.1.4 几何概型 1.1.5 条件概率 1.1.6 概率的乘法公式、全概率公式、Bayes公式 1.1.7 独立事件 1.1.8 n重Bemoulli试验及其概率计算 1.2 随机变量及其分布 1.2.1随机变量的定义 1.2.2 随机变量的分布函数 1.2.3 离散型随机变量 1.2.4 连续型随机变量 1.2.5 随机向量 1.3 随机变量的数字特征 1.3.1数学期望 1.3.2 方差 1.3.3 几种常用随机变量分布的期望与方差 1.3.4 协方差与相关系数 1.3.5 矩与协方差矩阵 1.4 极限定理 1.4.1大数定律 1.4.2 中心极限定理 1.5 数理统计的基本概念 1.5.1 总体、个体、简单随机样本 1.5.2 参数空间与分布族 1.5.3 统计量和抽样分布 1.5.4 正态总体样本均值样本方差分布 习题 第2章 R软件的使用 2.1 R软件简介 2.1.1 R软件的下载与安装 2.1.2 初识R软件 2.1.3 R软件主窗口命令与快捷方式 2.2 数字、字符与向量 2.2.1向量 2.2.2 产生有规律的序列 2.2.3 逻辑向量 2.2.4 缺失数据 2.2.5 字符型向量 2.2.6 复数向量 2.2.7 向量下标运算 2.3 对象和它的模式与属性 2.3.1 固有属性:mode和length 2.3.2 修改对象的长度 2.3.3 attributes()和attr()函数 2.3.4 对象的class属性 2.4 因子 2.4.1 factor()函数 2.4.2 tapply()数 2.4.3 gl()函数 2.5 多维数组和矩阵 2.5.1 生成数组或矩阵 2.5.2 数组下标 2.5.3 数组的四则运算 2.5.4 矩阵的运算 2.5.5与矩阵(数组)运算有关的函数 …… 第3章 数据描述性分析 第4章 参数估计 第5章 假设检验 第6章 回归分析 第7章 方差分析 第8章 应用多元分析(Ⅰ) 第9章 应用多元分析(Ⅱ) 第10章 计算机模拟 附录 索引 参考文献
### 回答1: 对数正态分布的均值和方差控制着正态分布的形状和分布特征。正态分布的形状受均值的影响,其中均值决定了分布的中心位置。而方差决定了分布的宽度,即分布的数据点分散程度。因此,通过控制均值和方差,可以控制正态分布分布特征。 ### 回答2: 对数正态分布是一种连续型概率分布,它的取值范围是从零到正无穷。对数正态分布的均值和方差分别控制着正态分布的位置和离散程度。 首先,对数正态分布的均值决定了正态分布的位置。均值越大,说明对数正态分布的整体位置越往右偏移;均值越小,则整体位置越往左偏移。这是因为对数正态分布是以对数形式定义的,而对数函数在右侧定向。因此,对数正态分布的均值主要影响正态分布的位置。 其次,对数正态分布的方差控制着正态分布的离散程度。方差越大,说明对数正态分布的波动性越高,使得正态分布更加分散;方差越小,则波动性减小,使得正态分布更加集中。方差与波动性之间存在正相关关系,方差越大,波动性就越大。因此,对数正态分布的方差主要影响正态分布的离散程度。 总而言之,对数正态分布的均值和方差分别控制着正态分布的位置和离散程度。均值决定了正态分布的位置,方差决定了正态分布的离散程度。 ### 回答3: 对数正态分布是一种连续的概率分布,其均值和方差在一定程度上控制着正态分布的形态。 首先,均值影响正态分布的中心位置。对数正态分布的均值代表了对数值的平均值,当均值增大时,正态分布向右移动,中心位置也相应地增大。相反,当均值减小时,正态分布向左移动,中心位置也相应地减小。因此,对数正态分布的均值控制着正态分布的中心位置。 其次,方差影响正态分布的分散程度。对数正态分布的方差代表了对数值的离散程度,方差较大时,正态分布的形态更加分散,即曲线更加平缓,尾部的概率密度较低。相反,方差较小时,正态分布的形态较为集中,曲线陡峭,尾部的概率密度较高。因此,对数正态分布的方差控制着正态分布的分散程度。 总而言之,对数正态分布的均值和方差共同控制着正态分布的中心位置和分散程度。均值决定了分布的中心,而方差决定了分布的形态。在实际应用中,对数正态分布的均值和方差的选择会直接影响到分布的特征和行为,因此在分析和建模中是需要考虑的重要因素。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

积跬步以至千里。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值