关注的结果变量为连续型组间比较(两组数据必须是独立的),并假设其呈现正态分布。首先判断是否为正态分布qqnorm(x1);qqline(x1)
传送:假设检验-KS检验
传送:假设检验-W检验
传送:假设检验-单样本t检验
假设条件:X,Y是两个独立的正态总体,,X1,X2...Xn是来自X的样本,Y1,Y2...Yn是来自Y的样本。样本的均值分别是
,方差分别为
一、两正态总体方差均已知
当两个正态总体方差均已知时,在原假设条件下,构造服从正态分布的检验统计量
双侧检验的拒绝域为,单侧检验的拒绝域为
或
z.test2=function(x,y,sigma1,sigma2,alternative="two.sided"){
n1=length(x);n2=length(y)
result=list()
mean=mean(x)-mean(y)
z=mean/sqrt(sigma1^2/n1+sigma2^2/n2) #构造z统计量
options(digits=4)
result$mean=mean;result$z=z
result$P=2*pnorm(abs(z),lower.tail=FALSE) #计算落入拒绝域的概率
#单侧检验-重新计算P值
if (alternative="greater") #H0:µ1≤µ2,H1:µ1>µ2
result$P=pnorm(z) #参考[两正态总体方差未知但相等]的统计量表达式理解
else if (alternative="less") result$P=pnorm(z,lower.tail=FALSE)
result
}
二、两正态总体方差未知但相等
当原假设为真时,构造服从t分布的检验统计量
双侧检验的拒绝域是,单侧检验的拒绝域是
或者
t.test(x1,x2,var.equal=T,conf.level=0.95) #默认条件下是方差不相等
t.test(y~x,data) #x为一个二分变量
三、两正态总体方差未知且不等
根据样本方差,构造服从t分布的检验统计量
双侧检验的拒绝域是,单侧检验的拒绝域是
或者
t.test(x1,x2,var.equal=F,conf.level=0.95)
四、配对样本t检验
X1,X2..Xn是X的样本,Y1,Y2..Yn是Y的样本,令,记
,
,则Z1,Z2,...Zn服从正态分布总体
,构造统计量
t.test(before,after,paired=TRUE) #非独立样本的t检验组间的差异呈现正态分布