校招与社招相比有哪些优劣势?

校招和社招之间的区别还是非常明显的,总结一下有下面几点不同:

  1. 求职者的工作经验不同
  • 校招的求职者都是应届生,大部分可能没有工作经验,或者只有6-12个月的实习经验;
  • 社招的求职者基本都是有工作经验的,如果应届生去应聘,对应的岗位一般是1-2年工作经验。

2.求职者能够投递的公司范围不同

  • 校招的企业,有很多是国央企,一般只在校招大规模招聘,社招要进去这些企业还是非常难的;
  • 社招的企业,企业类型上跟校招企业差不多,但是中小企业更多一些,但是能招聘应届生的小微企业是少之又少。

3.企业对于求职者的期望和后续培养方式不同

  • 企业对于应届生是相对宽容的,一般会给6-12个月的培养周期,不会要求入职立马就要能上手工作,产生业绩和成果;
  • 企业对于社招员工的期望更高,希望他们能尽快适应工作,如果3个月还跟不上节奏没有合适的产出,估计就要被解雇了。

通过以上几点的对比可以发现:对于应届大学生,校招明显更加友好,社招则残酷很多,所以一定要重视校招。

PS. 关于校招求职,建议应届大学生好好看看下面几个回答:

大学生如何准备校园招聘?

应届毕业生找工作都有哪些渠道?

校园招聘有哪些需要注意的地方?



 

无迹卡尔曼滤波(Unscented Kalman Filter, UKF)扩展卡尔曼滤波(Extended Kalman Filter, EKF)都是用于非线性系统状态估计的重要工具,但它们有着各自的特点和适用场合。下面将详细对比两者的优劣势: ### 一、无迹卡尔曼滤波的优势 1. **更高的精确度** - UKF通过无迹变换选择一系列Sigma点,并通过这些点对均值和协方差进行传播,而不是像EKF那样依赖于局部线性化。这种方式减少了因高阶项截断而引入的误差,在处理高度非线性问题时表现更为优异。 2. **无需显式求导数** - 使用EKF需要不断计算雅可比矩阵以完成线性化操作,当面对复杂模型时可能会导致解析困难甚至数值不稳定的问题;相反地,UKF避免了这一麻烦步骤,只需关注如何合理设置初始条件即可开始迭代运算流程。 3. **易于实现并行化计算** - 每个sigma point都可以独立处理其前向传递过程,因此非常适合现代计算机架构下的高效数据流管理机制,进而提高整体效率。 ### 二、无迹卡尔曼滤波的劣势 1. **较高的计算成本** - 尽管单次无迹变换本身相对简单直接,但由于涉及到更多样本点的操作以及后续整合分析环节的存在,使得总体上每一步都需要更多的浮点运算次数支持才能达到预期效果,特别是在维度较高时尤为明显。 2. **敏感于参数配置** - 正确设定相关的超参比如alpha(α)、kappa(k)等对于获得理想结果至关重要,否则可能导致发散现象发生等问题出现,而这部分知识往往缺乏明确指导规则可以参考,增加了实际应用难度。 相比之下,虽然EKF在某些方面显得有些粗糙不够精细,但它凭借较低开销成为很多实时性强要求严格的任务首选方案之一。当然随着硬件能力增强及优化算法发展进步,相信未来两者之间的界限会越来越模糊吧!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值