由I18n静态代码测试说开去

本文探讨了利用机器学习和统计分析进行bug预测,以应用于I18n测试的可能性。介绍了Google工程师的开源项目Bugspots作为静态代码测试工具,并提出了三种可能的选择:Bugspots(需要针对I18n测试重写)、Globalyzer(商业工具,需定制)和vGlobal(作者自编的Eclipse插件,语法感知)。强调没有银弹测试技术,高效的I18n测试应结合黑盒探索性测试、白盒代码测试、灰盒API CLI测试、动态自动化回归测试和静态代码级测试等多方面进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提到机器学习,相信不少人心中都会默默的飘过三个字——树新风!眼下这样的评价倒也蛮中肯的!但就历史经验看,新技术的步伐往往比我们想象中的都大,所以我们有理由相信随着deeplearning的日渐成熟,不久的将来计算机的自我编程应该不会再只是科幻小说里的桥段。

 

本文的主题不是机器学习,也不是自我编程,而是bug预测程序。目的是通过使用机器学习和统计分析,来自动判断某一行代码是否存在瑕疵。其实代码的静态测试技术由来已久,例如BugFinders,近期比较popular的开源项目是来自Google的工程师IlyaGrigorik的一个bug预测工具——Bugspots。GitHub地址如下:https://github.com/igrigorik/bugspots

 

通过命令行指定代码库对其进行扫描,Bugspots就会产生类似的示例信息提示dev对代码进行修改。

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值