D. Soldier and Number Game

本文介绍了一个两士兵间的计数游戏:一方选择形式为 a! / b! 的正整数 n 开始游戏;另一方通过不断除以大于1的因子来最大化游戏轮数,直至 n 降为1。文章提供了一种高效算法,用于计算不同 a 和 b 值下第二位士兵可能获得的最大分数。
摘要由CSDN通过智能技术生成
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x > 1, such that n is divisible by x and replacing n with n / x. When n becomes equal to 1 and there is no more possible valid moves the game is over and the score of the second soldier is equal to the number of rounds he performed.

To make the game more interesting, first soldier chooses n of form a! / b! for some positive integer a and b (a ≥ b). Here by k! we denote the factorial of k that is defined as a product of all positive integers not large than k.

What is the maximum possible score of the second soldier?

Input

First line of input consists of single integer t (1 ≤ t ≤ 1 000 000) denoting number of games soldiers play.

Then follow t lines, each contains pair of integers a and b (1 ≤ b ≤ a ≤ 5 000 000) defining the value of n for a game.

Output

For each game output a maximum score that the second soldier can get.

Examples
input
2
3 1
6 3
output
2
5
 
   
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <climits>

using namespace std;

typedef long long int ll;

const int maxn = 5e6+5;
int prime[maxn];
ll num[maxn];

void Init(){
	
	for(int i=2; i<=5000000; i++){
		if(prime[i]==0){
			for(int j=i; j<=5000000; j+=i){
				int tmp = j;
				while(tmp%i==0){
					num[j]++;
					tmp /= i;
				}
				prime[j] = 1;
			}
		}
	}
	
	for(int i=1; i<=5000000; i++)
		num[i] = num[i]+num[i-1];
}



int main(){
	
	Init();
	int T;
	scanf("%d",&T);
	int a,b;
	while(T--){
		scanf("%d %d",&a,&b);
		printf("%I64d\n",num[a]-num[b]);
	}
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值