结合opencv、ML、DL的电力仪表OCR

本文介绍了一个电力仪表OCR系统,利用OpenCV进行面板检测,EAST+SVM进行文字区域识别,旨在解决设备无网络传输接口时的数据统计问题。系统可在树莓派等平台上运行,实现数据实时上传,便于服务器监控电力读数。
摘要由CSDN通过智能技术生成

项目产生

许多公司电力设备仪表密集、分散,在没有网络传输接口的情况下,需要专人统计维护,给设备实时监控带来很大的难度。所以,提出一种基于图像算法的电力仪表OCR系统。能够在诸如树莓派等平台运行,由机器人携带,实时将数据上传至服务器,由服务器检测电力读数。

示例图片

项目框架

项目流程图片演示

第一步:panel检测,opencv

第二步 文字区域识别,使用EAST+SVM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值