2-23年3月20日,
yolov5 7.0热力图实验,加入了shufflenetv2 conv5 - ..yaml文件
用自己的权重生成热力图。遇到bug
解决方法:
打开模型的yaml文件。找到detect的层数
然后在main_gradcam.py文件中target_layers=['model_15_cv3_act', 'model_18_cv3_act', 'model_21_cv3_act']
这三个数字改成自己的网络结构。
在3月20日的yolov57.0热力图实验中,通过添加shufflenetv2conv5-.yaml文件并使用自定义权重产生热力图时遇到问题。解决方案涉及修改main_gradcam.py文件,将target_layers的层数改为模型的实际层号,如model_15_cv3_act,model_18_cv3_act,model_21_cv3_act,以匹配网络结构。
2-23年3月20日,
yolov5 7.0热力图实验,加入了shufflenetv2 conv5 - ..yaml文件
用自己的权重生成热力图。遇到bug
解决方法:
打开模型的yaml文件。找到detect的层数
然后在main_gradcam.py文件中target_layers=['model_15_cv3_act', 'model_18_cv3_act', 'model_21_cv3_act']
这三个数字改成自己的网络结构。
2778
1747

被折叠的 条评论
为什么被折叠?