Python数据分析与可视化依赖的两个对象

本文介绍了Python数据分析中的关键概念,如数据分析的定义,以及如何使用pandas库读取Excel、CSV和数据库数据。详细讲解了Series和DataFrame对象,包括它们的概念、获取方法、属性、操作和常用功能,适合初学者学习Python数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、引言

数据分析的概念

二、.导入外部数据

读取excel文件数据

​编辑读取文本数据(以csv文件为例)

读取数据库数据

三、Series序列对象

概念

获取序列对象的方法

Series序列对象的属性

Series序列对象中局部数据的访问方法

​编辑

Series序列对象的运算

Series序列对象常用方法

四、DataFrame表格对象

概念

表格对象的组成部分

创建表格对象的方法

表格对象的属性

表格对象的基本方法

五、尾言


一、引言

数据分析的概念

数据分析是利用数学、统计学理论与实践相结合的科学统计分析方法,对Excel据、数据库中的数据、收集的大量数据、网页抓取的数据进行分析从中提取有价值的信息并形成结论进行展示的过程
广义的数据分析包括狭义数据分析数据挖掘
狭义的数据分析通过数据的统计分析发现数据中的信息,分析数据结果背后的原因
数据挖掘则是通过数学算法和模型挖掘数据潜在规律,还可以预测数据的未来的走向。

二、.导入外部数据

读取excel文件数据

  • excel文件是微软办公软件excel使用的文件格式,用于存储的结构化数据。
  • Python中读取excel文件的方法: 调用pandas库的read excel函数
data = pd.read_excel(r'D:\工作\2.教学\任课材料\Python数据分析与应用\新课件\data'+r'\meal_order_detail.xlsx') #文件路径和名称构成的字符串


读取文本数据(以csv文件为例)

  • CSV文件是一种逗号分隔的文本文件,可以用excel和记事本打开
  • Python中读取CSV格式文件的方法: 调用pandas库的read_csv函数
data = pd.read_csv(r'D:\工作\2. 教学\任课材料\Python数据分析与应用\新课件\data'
                   +r'meal_order_info.csv',   # 文件路径和名称构成的宁符串
                   sep=',',                   #用于分隔数据的宇符
                   encoding='gbk')            #编码格式

读取数据库数据

  • Pandas库中提供连接Mysql等数据库的方法,可以在python读取数据库中的结构化数据
  • Pandas库中读取MySQL等数据库的方法中可以传入sql语句字符串作为参数,实现sq语句的运行
import pandas as pd
from sqlalchemy import create_engine
# 初始化数据库连接,使用pymysql模块
# MySQL的用户: root,密码:147369,端口: 3306,数据库: test
engine = create_engine('mysql+pymysgl://root:123456@localhost:3306/test')
# 查询语句,选出employee表中的所有数据
sgl = ''' select * from employee;'''
# read_sgl_query的两个参数: sql语句,数据库连接
df = pd.read_sgl_query(sgl, engine)
# 输出emplovee表的查询结果
print(df)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值