基于预测性机器学习算法的DDoS攻击检测
在当今数字化时代,网络安全是一个至关重要的问题,尤其是分布式拒绝服务(DDoS)攻击,它会严重影响网络的正常运行。同时,无线体域网(WBAN)在医疗保健领域的应用也越来越广泛,为患者的健康监测提供了便利。本文将介绍WBAN的相关知识,以及如何利用机器学习算法来检测DDoS攻击。
无线体域网(WBAN)
无线体域网是一组安装在患者身体上的传感器节点,用于读取生理数据并将其发送到远程设备,如数据库服务器或医疗保健提供者。然而,要实现这一目标,还需要解决一些开放性挑战。
WBAN硬件组件
WBAN硬件包括一组传感节点和网关设备,主要分为以下三类:
- 网关/个人设备 :也可称为协调器、聚合器或集线器。它收集从传感器节点和执行器接收到的生理数据,并通过外部网关将其转发给用户(如患者、护士、医生)或数据库服务器。个人设备的示例包括笔记本电脑、个人数字助理(PDA)和智能手机。
- 执行器 :这是一种可以根据传感器节点报告的数据或与用户交互来执行活动的设备。例如,基于葡萄糖水平监测,带有储液器和集成泵的执行器可以为糖尿病患者输送精确剂量的胰岛素。
- 传感器节点 :这些是从患者身体感知实际生理数据并将其发送到个人设备或PDA的医疗传感器。执行器可以与传感器集成。市场上有各种类型的生物医学传感器节点可用于医疗保健应用,包括加速度计、二氧化碳气体传感器、血糖传感器、血氧传感器、脑电图(EEG)、心电图(ECG)、温度传感器等。
WBAN通信模型
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



